length n = 138
dimension k = 11
alphabet length q = 2

minimum distance d = 62

generator matrix:
000000000000000000111111111111001000000000000000011111111111111000000000000000000111111111111000000000000111111111111111111000000001111111
000000001111111111000000111111001000011111111111100001111111111000000000011111111000000001111000000111111000000000011111111000011110000111
000001110000000111000111000111010001100000011111100110000001111000001111100000111000001110001001111001111001111111100000011001100110011001
000111110001111001001011001011001010100011100011101010001110001011110001100011011001110010011110001000001000000011100001101110000111100001
001110010000111001011101110101000001100111101100000110011110110100010111101101001110010010110010111000110010011101100010111010101010101011
000010100011000000010001000011111110001000110101111000100011010000101010110111101010111110000000110110110000100110100101011100101101001010
011111110111001010100101111110010100111001010010101101110000001001100100001001001101010110010111111001010111001001101111000101001010101100
001001111110010110010010110101111000001010000110011111010111100110000001011010011111111010001100011010101110000111010000110110000111100001
011100100111011001110101000101001111110111010101111111011101010111100000100110010001100010001110010111000101110100000011100101010101010100
000100100001101010011011110000101110010010011011000111011100101101110101001100000101000110000000011001100101000001110010110001100111100110
110111110010100111110100011111001000001000101010011111011101010011011011010001011011110000011111000101010010100110110100010010101011010100

projective group of automorphisms generated by:
10011100111
00010111100
10101100101
11011100011
00001110111
10001001001
01101010111
00110110100
11000100111
01100000101
00101110010