length n = 170
dimension k = 10
alphabet length q = 2

minimum distance d = 78

generator matrix:
00000000000001111111100000000000001111111100000000011111111111100000000011111111111100000000000000000111100000000011111111111100000000011111111111100000000000111111111111
00000001111110011111100000001111110011111100000001100000000001100000001100000011111100000001111111111001100011111100000011111100000001100000011111100000111111000000111111
00011110011110000111100011110011110000111100000010101111111110100001110101111100011100111110000011111010101100111100001100111100001110101111100011100111000111000111000111
00100010001110101001100100010100010000000000111111010000011110100010111000000101100101000110111100011000010011011100110101001111110111010000000100011001011011001111011011
01100001110001000011101000101100111101011100001111010001111110101111011000011110100100011011000100101001100101111101001100110100110111000011100000111010101101010001000011
01000100000001101101100111100111100011001101000111000110000011010111001110101101001010111001011101010110001000000100001000001011001000101100111011100000101011011011101101
01101010100011110101111011011101000110010110010001111110101110000000001110000111001110101101001010111001110010101010000010010111001001010011000000100110000101011101110110
01010111010100111110101000101111110001011111011000000011010100001100011001100111101110110101100111011100111010101100111100101001000011010101001101011110100011011010000010
10001100111101110101110011110001110111000111100100001001001100011011010110110010100110001000010011011100100000110000000000100100110000100011111100011101100000011111000100
00000111100110011000001101101011011110100010011100001011010000001100001110011111001110111010100010111101000000000010010000100100011010101111110001100111111000011100001011

projective group of automorphisms generated by:
1010100100
1100001000
1011000100
1011110100
1100000010
0010001111
1101010011
1011010110
0010110000
1010101100