length n = 161
dimension k = 10
alphabet length q = 2

minimum distance d = 72

generator matrix:
00000000000001111111100000000011111111111100000000000001111111100000000000000000111100000000011111111111100000000011111111111100011110000000001111111111110001111
00000001111110000001100000001100000011111100000001111110000001100000001111111111001100011111100000011111100011111100000011111101100110001111110000001111110110011
00001110001110111110100001110101111100011100001110001110111110100111110000011111010101100111100001100111100000000000000000000010101011110001110001110001111010101
00010110010010000111101110010110111100101100110111110111000111001001110000100111111101100000100110101001111100111100001100111101111001110010011111110010011000011
01110110110111111111100010100110001101001101000010110011001011011010010111001011110010101000011010011010001101001101111111000101100110111100100010110111111001100
00111010001011011011110110011111010101000111010101000100011000001001111011101001110000100001000000100010000111010010010100001010101011011100001101010110111010101
01010101111010011101000000001111000001110110110101011101110100001010110001111110001110001010100010001100110101100011101011001110101010100000010001000000011010101
11000001110000011010110010110110110000001001001011000101101010010100100011000100011001010100000110011100111100111111110011000010101010110110010111110010110101010
11111110100100000000000100101001011001001111100100101101011110110111011101100100011011111011011111111010111100111100001100111110101010111100100000100010110101010
01011111010101001101001100001111110001110100011100101010100000101101110100011110101000000000001010000101011001000100110001010001100110011000001101111110110110011

projective group of automorphisms generated by:
1010100100
1100001000
1011000100
1011110100
1100000010
0010001111
1101010011
1011010110
0010110000
1010101100