length n = 143
dimension k = 10
alphabet length q = 2

minimum distance d = 64

generator matrix:
00000000011111111111100000000000001111111100000000000000000111100000000000001111111100000000011111111111100000000000111111111111000111100011110
00000001100000011111100000001111110000001100000001111111111001100000001111110000001100000001100000011111100000111111000000111111011001101100110
00001110101111100011100001110001110111110100111110000011111010100001110001110111110100001110101111100011100111000111000111000111101010110101010
00010111000000101100101110010110111001110001000110111100011000000110010000010001110111110111010000000100011001011011001111011011011110010000110
01111011000011110100100010010010010000000000011011000100101001111010110010110010110100110111000011100000111010101101010001000011011001110011000
10111001110101101001010100110001011010111110111001011101010110001110100010100001010011001000101100111011100000101011011011101101101010110101010
00000001110000111001111001001111010100111010101101001010111001111010100110111010110011001001010011000000100110000101011101110110101010110101010
01100011001100111101110101110001111101001010110101100111011100111010101101010010011101000011010101001101011110100011011010000010101010101010100
11011010110110010100100000001011011111111110001000010011011100101001010111000000101000110000100011111100011101100000011111000100101010101010100
01100001110011111001111001111010101100011010111010100010111101001000111001010000100100011010101111110001100111111000011100001011011001101100110

by adding the parity bit to 142