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Multilinear QSAR models are developed for the largest and most diverse 

set of PPARγ agonists treated hitherto. Binding of these small molecules 

to the human nuclear receptor PPARγ can be described by models that 

contain simple 2D molecular descriptors and nevertheless are of good 

quality and predictive power. On the other hand, modeling of gene 

transactivation, the functional activity of the agonists, turned out to 

be much more difficult. The models presented are thoroughly validated by 

crossvalidation, randomization experiments, bootstrapping, and training 

set/test set partitioning. Problems encountered that are typical for QSAR 

studies are discussed in some detail.  

 

                             INTRODUCTION 

   The peroxisome proliferator-activated nuclear receptors (PPARs) are a 

class of transcription factor proteins that play an important role in the 

regulation of lipid and glucose metabolism in vertebrates. They are 

linked to severe human diseases such as cardiovascular disease and type 2 

diabetes.1-4 The following simplified mechanism of action has been 

proposed: When binding a small molecule called an agonist, a PPAR is 

activated by undergoing a conformational change,5 binds (in the form of a 

heterodimer with an RXR receptor) to a specific binding element in the 

DNA (response element located in a gene promotor sequence), thereby 

enhancing the transcription of specific genes that code for metabolic 

enzymes. 
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   Three subclasses of PPARs are known, called PPARα, PPARγ, and PPARδ, 

that are coded by different genes and expressed at different levels in 

various tissues and are associated with various functions. Of these, 

PPARγ is mostly expressed in adipose tissue, where it is essential in 

adipocyte differentiation and controls fatty acid levels, increasing 

triglyceride synthesis and storage within adipocytes. Activation of PPARγ 

improves the condition of insulin resistance, and therefore PPARγ became 

a primary target in treatment of type 2 diabetes. Indeed, there is strong 

evidence that PPARγ regulates glucose homeostasis.1-4   

   For PPARγ, several unsaturated fatty acids, in particular 

prostaglandins6 and nitrolinoleic acids,7 have been proposed as natural 

ligands. A few synthetic PPARγ agonists are approved drugs (e.g. 

rosiglitazone, a thiazolidinedione (TZD)) or under development in several 

pharmaceutical companies as antidiabetics (e.g. tesaglitazar, an O-

analogous tyrosine derivative, or muraglitazar). 
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   The binding of a PPAR agonist to its receptor is measured in vitro and 

expressed numerically as the corresponding dissociation constant Ki (or 

its negative decadic logarithm pKi), or as IC50, the concentration that 

results in 50% binding. More interesting from a pharmaceutical point of 

view is a measure of the agonist’s function, gene activation. This 

activity can be measured in a cell-based assay, it is expressed as EC50
 

(or its negative decadic logarithm pEC50), the concentration that causes 

half-maximal activation. Of course, the pharmaceutical effect in vivo, 

such as lowering of the lipid or glucose level in blood, is an even more 

valuable quantity to know. Unfortunately, both measurement and 
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understanding is progressively more difficult for the three effects in 

the order mentioned, since the physicochemical phenomena dominant in the 

first case are more and more obscured by complex and poorly understood 

biological phenomena in the second and third case. 

   Numerical values for the activities of many PPARγ agonists have been 

published, resulting from research in several pharmaceutical companies. 

It would be very valuable to transform this wealth of data into 

information, with the goal to predict receptor binding and 

transactivation behavior of potential PPARγ agonists from their chemical 

structure alone. 

   Recently, several QSAR studies of agonist binding to human PPARγ were 

published.8-12 While the first of these dealt with thiazolidinediones,8 

others9-12 treated one or a few series of tyrosine derivatives originating 

from Glaxo Wellcome research and published in 1998.13-15 The more advanced 

of these studies,11,12 using the CoMFA and CoMSIA methods, depend on 

alignment of the agonists to the conformations of rosiglitazone or 

farglitazar, as found (X-ray) in their complexes with the PPARγ ligand 

binding domain.16,17 The resulting models are reported to be of high 

quality (though a few compounds were excluded before and after the 

analyses), but they include rather limited numbers and types of PPARγ 

agonists, and their use is restricted by the necessity of alignment. The 

same is true for a recent CoMFA study on binding of dual PPARα/PPARγ 

activators.18  

   As to human gene activation by PPARγ agonists, using the above methods 

good models for EC50 could not be obtained.
11 For a few agonists a QSAR 

equation between mouse PPARγ transactivation and a docking scoring 

function was given.19 For two rather limited series of human PPARγ 

agonists, QSAR equations for transactivaton were published recently.20,21  

   The aim of the present study was to develop simple and easily portable 

models of broader applicability for both human PPARγ binding of and 

PPARγ-mediated gene activation by small molecules. We aimed at including 

all known series of PPARγ agonists with appropriate experimental data 

available. 
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                               METHODS 

   Experimental Data. Unfortunately, various protocols are in use for 

measuring both receptor binding of and transactivation by PPARγ 

agonists,22 and numbers obtained for the same compound under various 

protocols differ considerably. For example, for rosiglitazone we found 

published IC50 values for binding to human PPARγ varying from 36 nM23 to 

465 nM.24 Alternatively, the same phenomenon was described by Ki values 

ranging from 47 nM25 to 230 nM.26 For PPARγ-mediated human gene activation 

by rosiglitazone EC50 values covering anything between 18 nM
27 and 730 nM28 

were published. 

   To test the sensitivity of numerical values for slight changes in the 

experimental protocol, we compared the results for binding of a series of 

agonists to human PPARγ. While data obtained in a scintillation proximity 

assay23 were published in references 13-15, in the corresponding patent29 

data were disclosed that were obtained in a classical solution 

scintillation assay for an overlapping set of agonists. For the 61 

compounds with both kinds of numerical values available, data are 

displayed in Figure 1. 

 

   From Figure 1 we have to conclude that the two methods either do not 

measure the same phenomenon, or, if they do, at least one does it in a 

rather unreliable manner. Therefore we decided to include in our study 

human PPARγ data obtained under one and the same protocol only, i.e. for 

receptor binding the scintillation proximity assay.23 Data resulting from 

this method were successfully treated by independent research groups and 

thus seem to be more trustworthy.10-12 

 

   For gene activation we decided to use the data obtained from a 

transient cotransfection assay likewise developed at Glaxo.30 

Interestingly, again for a series of 65 agonists data are available both 

from the patent29 and from the ensuing publications,13-15 seemingly all 

obtained using this same assay. Nevertheless there is a remarkable 

scattering in the data, as shown in Figure 2. 

 

   In this situation we decided to use the data given in the journal 

publications, in the hope that the inconsistencies may at least in part 

be due to erroneous numbers in the patent being corrected in the later  
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Figure 1. Experimental pKi values for receptor binding of some PPARγ 
agonists, measured in a classical solution scintillation assay (reference 
29) and in a scintillation proximity assay (references 13-15).  
 

publications. Obviously, the quality of any data treatment result is 

limited by the quality of the input data. 

 

   By the above, the synthetic agonists included in our study are 

essentially limited to those from Glaxo research. Specifically, along 

with the tyrosine-based compounds and the few thiazolidinediones from 

references 13-15, indole derivatives,25 oxadiazole-substituted α–

isopropoxyphenylpropanoic acids,31 α,α-dimethyl-aminopropylphenoxyacetic 
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acids,32 tyrosine derivatives bearing small N-substituents,27,33 fatty 

acids34 and thiazolidinedione-fatty acid hybrids35 were included, as far 

as experimental data obtained by the same procedures are available. 
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Figure 2. Experimental pEC50 values for gene activation by some PPARγ 
agonists, measured in a transient cotransfection assay and taken from 
reference 29 and from references 13-15, respectively.  
 

   Stereochemistry. Published numerical values for the binding and 

transactivation behavior of chiral PPARγ agonists were obtained for pure 

S enantiomers in some cases, for racemates in others, though the activity 

is known to almost completely reside in the S enantiomers.36,37 In order 

to render racemate data comparable to pure S enantiomer data, we added 
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0.3 (=log10 2) to all pKi and pEC50 values of racemates taken from the 

literature, which is equivalent to assuming that the concentration of a 

racemate required to obtain a certain effect is twice the concentration 

of the corresponding active enantiomer, and to ignoring any racemization 

that might occur to a pure enantiomer. These assumptions are discussed in 

the Discussion section. The stereocorrection (0.3 log units) is small 

compared to the intrinsic scatter of the data. For example, Figures 1 and 

2 above were obtained from stereocorrected data. In the worst cases the 

difference between corresponding x and y value in Figure 1 is about 2 log 

units (e.g. 37, 38, 39, 68), and 1-2 log units in Figure 2 (e.g. 46, 64, 

75, 85). Corresponding plots obtained from data not stereocorrected look 

essentially the same (not shown). 

 

   Compound set. The final agonist set consists of 176 compounds (Scheme 

1), 144 of which have measured pKi values for binding to PPARγ, 150 of 

which have measured pEC50 values for transactivation, and 118 have both 

(Table 1). The pKi range in the data set is from 4.68 to 9.16 (mean 7.52, 

standard deviation 1.24), the pEC50 values vary between 4.94 and 10.00 

(mean 7.49, standard deviation 1.18, all values derived from 

concentrations given in mol/L, stereocorrected values). 

 

   Descriptors. In what follows we used a pool of molecular descriptors 

consisting of those supplied by the program MOE38 plus the MACCS keys, as 

implemented in an additional module for use within MOE.39 This 

combination had been found useful for a drug classification problem.40 

Initially we also tried the descriptors from MOLGEN-QSPR,41 but these 

yielded inferior results. For simplicity we did not use any quantum 

chemical descriptors. Because both the PPARγ agonists and the receptor 

itself are known to be highly flexible, all descriptors depending on 

molecular conformation were excluded. Descriptor values were calculated 

for the compounds in the protonation state assumed to be predominant at 

pH 7, according to known pKa values for important acidic and basic 

substructures. Descriptors exhibiting constant or nearly constant values 

in the respective compound sample were discarded. Likewise we removed one 

out of every pair of descriptors found to be collinear or anticollinear. 
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Table 1. Experimental and Calculated pKi and pEC50 Values of Compounds 
1-176. 

ID pKi exp. 
pKi calc. 

(m1) 
pKi calc. 

(m2) pEC50 exp. 
pEC50 

calc. (m3) 
pEC50 

calc. (m4) 
1 7.93 6.78 6.60 6.64 5.21 6.99 
2 5.88 6.44 6.56 6.31 5.80 5.09 
3 6.12 6.03 6.63 6.16 7.01 5.37 
4 5.71 6.33 6.17    
5    5.60 4.25  
6 6.10 6.61 6.75 4.99 5.71 5.02 
7 7.09 7.08 6.97 5.08 6.10 6.02 
8 6.20 6.33 6.13    
9 7.29 8.05 7.24 6.21 7.07 6.23 

10 8.19 7.96 8.25 7.30 7.18 7.09 
11 8.28 8.02 7.85 8.04 7.24 7.56 
12 8.85 8.18 8.02 8.04 7.03 7.70 
13 8.83 8.46 8.30 8.58 7.59 8.09 
14 8.94 8.66 8.62 9.47 8.58 8.97 
15 7.85 7.79 7.57 7.08 7.46 7.16 
16 7.78 7.79 7.65 6.16 6.20 7.07 
17 7.79 8.21 8.36 6.33 7.01 6.99 
18 7.37 8.55 8.32 6.61 7.64 6.62 
19 8.59 8.24 8.14 8.60 7.55 7.75 
20 8.78 8.42 8.59 7.84 7.67 8.01 
21 7.21 7.91 7.77 6.04 6.63 6.12 
22 8.73 8.29 8.26 7.27 7.15 8.01 
23 6.79 7.54 6.92 6.07 6.22 5.46 
24 8.96 8.74 8.79 10.00 8.16 8.50 
25 8.59 8.61 8.50 6.42 7.77 8.01 
26 8.70 8.78 9.16 7.09 7.72 7.96 
27 9.16 8.72 8.97 8.03 7.80 8.62 
28 8.75 8.84 8.57 8.97 8.46 8.24 
29 8.90 8.24 8.42 8.43 8.24 8.43 
30 8.32 8.79 8.37 7.91 8.32 7.72 
31 8.80 8.77 8.77 9.90 8.79 8.78 
32 8.96 8.72 8.99 9.22 8.32 8.87 
33 8.72 8.28 8.73 8.98 8.95 8.74 
34 9.07 8.39 8.73 9.61 8.95 9.10 
35 9.05 9.30 9.38 8.82 9.38 9.14 
36 8.85 8.62 8.43 8.74 8.44 8.85 
37 9.06 8.71 8.59 8.68 8.02 8.58 
38 7.56 8.18 8.30 5.91 6.29 6.33 
39 7.91 7.81 7.53 5.52 5.16 6.52 
40 8.59 8.93 9.01 7.51 7.10 7.21 
41 6.77 8.68 8.88 7.29 8.83 6.67 
42 9.11 9.07 9.54 8.74 8.02 9.10 
43 8.36 8.14 8.02 6.93 7.73 7.72 
44 8.66 8.84 8.38 8.89 7.57 8.04 
45 9.01 8.68 8.38 8.62 9.74 8.08 
46 8.58 8.55 8.27 7.63 7.25 7.78 
47 6.98 6.58 7.17 6.62 6.71 5.85 
48 7.41 7.34 7.22 5.96 6.47 6.37 
49 8.03 7.68 7.79 6.98 7.05 7.00 
50 7.73 7.61 7.46 6.49 6.92 6.65 
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51 7.71 8.26 8.50 6.57 6.94 6.55 
52 7.94 8.14 8.24 6.72 6.51 6.87 
53 8.87 8.48 8.71 7.70 7.77 7.90 
54 8.88 8.49 8.71 8.23 7.77 7.93 
55 8.59 8.49 8.71 7.92 7.77 7.62 
56 8.95 8.23 8.34 8.33 7.73 8.20 
57 8.87 8.23 8.34 8.08 7.73 8.12 
58 8.85 8.24 8.34 8.37 7.73 8.10 
59 9.06 8.53 8.66 7.72 7.32 8.19 
60 8.94 8.54 8.66 7.23 7.32 8.09 
61 8.55 8.54 8.66 7.79 7.32 7.68 
62 7.57 8.56 8.76 6.43 7.63 6.49 
63 7.48 8.56 8.76 6.42 7.63 6.40 
64 7.61 8.75 8.79 7.92 8.38 7.40 
65 8.49 8.21 8.14 8.04 7.69 7.78 
66 8.39 8.17 8.21 8.54 7.87 7.65 
67 7.70 8.13 8.29 8.41 8.05 6.90 
68 8.86 8.42 8.37 7.64 7.83 8.13 
69 8.93 8.30 8.37 7.50 7.83 8.20 
70 8.79 8.70 8.67 7.37 8.15 7.98 
71 8.17 8.23 8.34 6.94 7.73 7.39 
72 8.36 8.67 8.55 7.35 7.93 7.61 
73 7.93 8.30 8.37 7.72 7.83 7.15 
74 8.89 8.31 8.37 8.38 7.83 8.16 
75 8.31 8.43 8.37 8.22 7.83 7.57 
76 7.11 8.42 8.10 5.33 6.27 6.25 
77 7.67 8.30 8.71 5.69 5.66 6.80 
78 8.68 8.44 7.85 8.06 7.83 8.52 
79 6.49 6.70 6.83 5.42 6.83 5.87 
80 8.11 6.90 7.27 6.69 7.26 7.96 
81 8.77 8.44 7.85 7.91 7.83 8.61 
82 6.39 6.70 6.83 6.98 6.83 5.77 
83 6.24 6.90 7.27 6.68 7.26 6.00 
84 8.79 8.69 8.42 8.35 7.65 8.70 
85 8.79 8.37 8.54 9.55 8.86 8.83 
86 9.03 8.61 8.43 8.83 8.44 9.03 
87 8.74 8.62 8.43 9.04 8.44 8.74 
88    5.61 6.44  
89 8.11 7.85 7.80 7.79 6.76 8.07 
90 6.90 7.75 7.57 6.55 7.25 6.81 
91 8.43 8.37 8.23 9.15 9.08 8.43 
92 8.52 8.71 8.28 9.04 9.37 8.51 
93 8.62 8.67 8.65 9.52 9.53 8.58 
94 9.01 8.44 8.23 9.24 9.40 9.00 
95 5.81 6.60 6.45 4.94 5.13 5.14 
96 6.21 6.77 7.46 6.53 6.92 5.47 
97 6.82 7.32 7.06 6.57 7.16 6.49 
98 7.63 6.94 7.24 7.35 6.77 6.87 
99 7.87 7.42 7.51 8.25 7.71 7.54 

100 8.67 7.75 7.83 8.80 8.59 9.14 
101 5.41 5.33 5.53 5.15 5.78 5.49 
102 5.43 5.15 5.34    
103 6.83 6.07 5.79 6.51 6.23 6.84 
104 5.14 6.14 5.86 5.52 6.44 5.05 



 14

105 6.67 6.71 7.25    
106 5.72 6.50 6.17    
107 5.35 4.90 5.40    
108 6.26 6.09 6.31 5.25 6.42 6.25 
109 6.31 6.47 6.09 6.47 6.67 6.23 
110 7.32 6.28 6.74 7.36 6.00 7.24 
111    7.40 7.29  
112    7.30 7.50  
113    7.00 7.50  
114    7.30 7.42  
115    7.60 7.42  
116    8.10 7.42  
117    8.00 7.62  
118    7.79 7.68  
119    7.90 7.61  
120    7.50 7.50  
121    8.70 7.78  
122    8.82 7.83  
123    7.30 7.71  
124    7.79 7.85  
125    6.94 7.48  
126    8.19 8.17  
127    9.00 8.38  
128    7.70 8.38  
129    7.90 8.50  
130    8.70 8.50  
131    8.52 8.46  
132    7.10 8.46  
133    8.70 8.69  
134 4.68 4.59 5.29    
135 5.19 5.12 5.43    
136 5.39 5.41 5.57    
137 5.21 5.55 5.56    
138 5.22 5.23 5.55    
139 5.66 5.68 5.55    
140 5.62 5.89 5.69    
141 5.80 6.03 5.68    
142 5.80 5.72 5.67    
143    9.30 8.27  
144    7.52 8.23  
145    7.09 6.63  
146    6.49 6.82  
147    8.40 7.95  
148    6.77 6.91  
149 5.68 6.35 6.04 5.30 5.93 5.94 
150 7.28 6.33 6.11 6.62 6.79 7.59 
151 5.59 6.77 6.19 5.46 7.21 5.69 
152 6.21 5.79 5.79 5.59 5.78 6.30 
153 6.55 7.61 7.08 6.23 6.12 6.65 
154 6.32 6.55 6.41 6.86 7.35 6.59 
155 6.80 6.80 6.90 7.62 7.17 7.55 
156 6.07 6.26 5.67 6.39 5.51 6.36 
157 6.44 6.53 6.34 6.41 7.19 6.75 
158 6.01 7.17 7.22 6.15 7.84 6.21 
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159 8.16 7.44 7.42 8.33 7.58 8.49 
160 5.30 6.21 6.34    
161 6.15 6.29 6.42    
162 5.47 6.15 6.10    
163 6.84 6.36 6.49    
164 6.87 6.42 6.56    
165 7.19 6.46 6.63    
166 6.26 6.60 6.78    
167 6.22 6.32 6.47    
168 6.22 6.74 6.76    
169 6.52 6.73 6.76    
170 7.05 7.14 6.85    
171 7.52 7.20 6.92 6.39 6.50 6.62 
172 8.05 6.61 6.60 6.59 6.27 7.15 
173 7.62 7.26 6.99 6.85 6.68 6.70 
174 8.05 7.30 7.06 6.85 6.85 7.12 
175 8.00 7.32 7.14 6.84 7.03 7.05 
176    9.55 7.71  

 
 

   Descriptor selection. Often one does not know in advance which 

descriptor or combination of descriptors are relevant for the problem at 

hand. Commercial statistics packages provide methods for more or less 

automatically selecting a good descriptor combination. Such procedures 

select a near-best descriptor combination out of a large pool of 

descriptors essentially by screening many combinations selected by some 

heuristic, and always keeping the best one according to a preset 

criterion. We for this purpose used both a genetic algorithm supplied as 

an additional module to MOE, and the step-up procedure provided by 

MOLGEN-QSPR.42 

 

                               RESULTS 

   A. Binding. The best multilinear regression (MLR) equation we were 

able to find for PPARγ agonist binding is model m1, made of 10 

descriptors selected by the step-up procedure from the pool of 230 

descriptors that survived for this sample of 144 compounds. (In the text 

we characterize a MLR model by the descriptors involved and by some 

statistics. For full models see Tables 2 and 3.) 

 

pKi:  VAdjEq   PEOE_RPC-   bpol   sMR_VSA0   sMR_VSA3   sMR_VSA6 

     MACCS49   MACCS97   MACCS116   MACCS152                      (m1) 

n = 144, r2 = 0.7938, s = 0.5822, F = 51.20, r2cv = 0.7627, scv = 0.6246,  
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where subscript cv denotes quantities obtained by leave-one-out (LOO) 

crossvalidation. A calculated vs observed-plot is shown in Figure 3, 

showing both fitted (closed symbols) and LOO-crossvalidated values (open 

symbols).43 

   Though r2 = 0.79 is not overly comfortable, m1 has s = 0.58 log units, 

which is appreciably smaller than the standard deviation of the 

experimental data, 1.24 log units. Given the facts that m1 applies to the 

broadest variety of PPARγ agonists treated so far, and that it uses 

simple descriptors, one may conclude that, if valid, it may be useful. A 

superficial glance at the statistics is encouraging: The crossvalidated 

statistics are not much worse than those of fitting. The absolute t 

values of all descriptors and the intercept in m1 are above 2.6, and F = 

51 is far above the critical tabulated value 1.90 (α = 5%) for 144 data 

points and 10 descriptors.  

   However, it is important to realize that the descriptor combination in 

m1 was selected from in principle 9.36·1016 combinations of 10 out of 230 

descriptors. The number of descriptors in the pool was 1.6 times the 

number of compounds. In such a situation the possibility to obtain chance 

correlations is a serious issue, and the conventional tabulated F values 

are not relevant. The problem has been known since 1972 at least,44 it is 

now termed descriptor selection bias and was rediscussed recently.45 

Essentially, the problem is that given a large number of descriptors, 

there are probably some combinations that describe a data set relatively 

well purely by chance, i.e. even if the descriptors consist of random 

numbers. If many descriptor combinations are screened, and the “best” 

combination is kept, then the risk is high to keep one of these chance 

correlations. 

 

   Validation. For validation one should have an independent test set of 

compounds of the same kind as those in the training set and with 

experimental values available obtained by the same measurement protocol.  

However, following Hawkins,46 we had decided to use all available 

compounds for training, in order to obtain a model built on as diverse 

structures as possible. Therefore, in the absence of a test set, we spent 

some effort in additional validation procedures.  
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Table 2. Full Modelsa,b 

 

pKi = -24.9625(±3.2665)·VAdjEq +10.1544(±3.7646)·PEOE_RPC- 

-0.0777(±0.0176)·bpol -0.0272(±0.0042)·sMR_VSA0 

-0.0633(±0.0158)·sMR_VSA3 +0.0168(±0.036)·sMR_VSA6 

+1.1317(±0.1898)·MACCS49 +0.7718(±0.1073)·MACCS97 

+0.4512(±0.1046)·MACCS116 +0.5177(±0.0998)·MACCS152 

+17.0750(±1.5651)                                                  (m1) 

 

 

pKi = -0.0233(±0.0109)·b_single +0.3635(±0.0789)·slogP 

+0.0206(±0.0040)·slogP_VSA3 +0.8444(±0.258)·MACCS49 

+0.4500(±0.1103)·MACCS93 +0.8388(±0.0876)·MACCS97 

+0.2932(±0.1253)·MACCS132 -0.5876(±0.1294)·MACCS140 

-0.2855(±0.1591)·MACCS141 +0.5910(±0.0980)·MACCS152 

+3.8594(±0.4163)                                                   (m2) 

 

 

pEC50 = 27.4408(±4.1820)·PEOE_VSA_FPPOS +0.5377(±0.0752)·slogP  

-0.0208(±0.0057)·slogP_VSA0 +0.0334(±0.0050)·sMR_VSA6  

-1.4341(±0.1900)·MACCS22 +0.9581(±0.2781)·MACCS49 

-1.2896(±0.3508)·MACCS64 -0.5947(±0.1405)·MACCS80 

+0.8876(±0.1679)·MACCS94 +0.3394(±0.1068)·MACCS97 

-0.9398(±0.1647)·MACCS106 -0.5726(±0.1911)·MACCS109 

+1.6799(±0.4170)·MACCS125 +0.1848(±0.0874)·MACCS137  

+2.1372(±0.5284)                                                    (m3) 

 

 

pEC50 = 1.0470(±0.0663)·pKi +0.5246(±0.1461)·PEOE_PC-  

+0.6195(±0.1343)·MACCS57 +0.1795(±0.0283)·MACCS62 +0.1969(±0.4695)  (m4) 

 

 
aNumbers in parentheses are standard errors. 
bFor explanation of descriptors involved see Table 3. 



 18

Table 3. Descriptors Used in the Final Models.a 

 

b_single       number of single bonds including bonds to H atoms 

VAdjEq         vertex adjacency information index (equality) 

PEOE_PC-       sum of negative partial charges of atoms, where partial 

               charges are calculated using the PEOE method 

PEOE_RPC-      relative negative partial charge; the smallest negative 

               partial charge divided by the sum of negative partial  

               charges (PEOE partial charges) 

PEOE_VSA_FPPOS fractional positive polar vdW surface area; sum of vdW  

               surface areas of atoms whose partial charge is greater 

               than 0.2, divided by the total surface area  

bpol           sum of bond polarizabilities; sum over all bonds of  

               differences between atom polarizabilities 

slogP         logP calculated by the atom type contribution methodb 

slogP_VSA0    sum of vdW surface areas of atoms whose contribution to  

              slogP is less or equal to -0.4b 

slogP_VSA3    sum of vdW surface areas of atoms whose contribution to 

              slogP is between 0 and 0.1b 

sMR_VSA0      sum of vdW surface areas of atoms whose contribution to 

              sMR is less than or equal to 0.11, where sMR is the molar 

              refraction calculated by the atom type contribution methodb 

sMR_VSA3      sum of vdW surface areas of atoms whose contribution to 

              sMR is between 0.35 and 0.39b 

sMR_VSA6      sum of vdW surface areas of atoms whose contribution to 

              sMR is between 0.485 and 0.56b 

MACCS22   number of atoms in 3-membered rings 

MACCS49   1 if molecule is formally charged, 0 otherwise 

MACCS57   number of O atoms in rings 

MACCS62   number of ring atoms vicinal to a non-ring bond that 

          immediately connects rings 

MACCS64   number of non-ring S atoms attached to a ring 

MACCS80   number of N atoms separated by 4 bonds 

MACCS93   number of methylated heteroatoms 

MACCS94   number of N atoms bonded to at least one non-C heavy atom 

MACCS97   number of O atoms 4 bonds away from an N atom 

MACCS106  number of atoms bonded to at least 3 non-C heavy atoms 

MACCS109  number of O-CH2 bonds 
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MACCS116  number of CH2 groups 3 bonds from a CH3 

MACCS125  1 if there are at least 2 aromatic rings, 0 otherwise 

MACCS132  number of CH2 groups 2 bonds away from an O atom 

MACCS137  total number of heteroatoms in rings 

MACCS140  number of O atoms decreased by 3 if there are more than 3 O; 0 

          otherwise 

MACCS141  number of CH3 decreased by 2 if there are more than 2 CH3; 0 

          otherwise  

MACCS152  number of C atoms bonded to 2 or more C atoms and 1 O atom 

 
afor details see references 38 and 40. 
bsee Wildman, S. A.; Crippen, G. M. Prediction of Physicochemical 
Parameters by Atomic Contributions. J. Chem. Inf. Comput. Sci. 1999, 39, 
868-873. 
 

 

   Thus, first we perfomed an additional crossvalidation, i.e. four times 

leave-one-quarter-out (using the same descriptor combination as in the 

original model, for details see Katritzky47), though this has in 

principle the same limitations as leave-one-out crossvalidation.48 The 

result shown in Table 4 seems reasonable for a real model. 

 

   Y-randomization, also called y-scrambling or permutation test, was 

said to be “probably the most powerful validation procedure”.49 In this 

method the target activity values are randomly permuted, leaving all 

descriptor values untouched, and for the permuted y values the best QSAR  

model is built using the same descriptor selection procedure that led to 

the original model. This is repeated several times. Since the link 

between structure and activity is deliberately destroyed, the resulting 

models are expected to be of far lower quality than the real model.50,51  

In fact, y-randomization is an approximation of the action of chance.  

In 25 independent such y-randomization experiments, the mean best r2 was 

0.3025 (min 0.2218, max 0.4193, standard deviation 0.0423). Thus, not a 

single best r2 (nor a r2cv (=q
2)) value from these experiments came close 

to the corresponding number of the original model. 
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Figure 3. Calculated and observed pKi values for receptor binding of 
PPARγ agonists (model m1). Closed symbols represent fit, open symbols 
represent LOO-crossvalidated values.    
 

 

   In order to strictly judge the statistical significance of model m1 we 

generated for our 144 compounds the values of 230 pseudo-descriptors made 

of random numbers, and tried to describe the original target pKi using a 

combination of 10 from these, by applying the same descriptor selection 

procedure as above. In 25 independent such experiments the respective 

best models had r2 values between 0.3115 and 0.4574, mean 0.3859, 

standard deviation 0.0358. The r2 value of m1 (0.7938) is separated from 

the mean best random r2 by about eleven standard deviations and thus is  
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Table 4. Results of Leave-One-Quarter-Out Crossvalidation of Model m1. 

Set to fit     r2(fit)    Set to predict     r2(pred) 

1, 2, and 3    0.8180         4              0.7037 

1, 2, and 4    0.7951         3              0.7650 

1, 3, and 4    0.7867         2              0.7874 

2, 3, and 4    0.7882         1              0.7983 

 

Average        0.7970                        0.7636 

 

 

not expected to arise by chance under these conditions. This is 

equivalent to rejecting the null hypothesis that all regression 

coefficients should be zero.  

   There is one pair of highly intercorrelated descriptors included in 

model m1, VAdjEq and PEOE_RPC- (r2 = 0.79). All other pairwise descriptor 

intercorrelations have r2 < 0.68. A high intercorrelation of two 

descriptors does not, as such, render a model useless, since important 

for multilinear regression is not in what two descriptors agree, but in 

what they differ.42a,52 There may be some further multicollinearity in the 

descriptors that is not easily detected and will, among other things, 

lead to inflated uncertainty in the regression coefficients. 

Bootstrapping was performed as a further diagnostic to get an impression 

of the variability of the regression coefficients and to detect any 

pathologies in the data.53 The result of 106 runs on bootstrap samples was 

r2bs = 0.8067, standard deviation 0.0319. According to reference 53, this 

value does not point to any problem with model m1. The mean regression 

coefficients and the intercept resulting from these 106 runs were all 

within 4% of those found for the original model, except that of MACCS116 

which deviates by 5.3%. 

 

   Training set/test set partition. The predictive ability of a model can 

be assessed only from the result of predictions. We therefore randomly 

partitioned the 144 compounds with pKi data available into a training set 

(90%) and a test set (10%). The compounds are naturally partitioned into 

groups, tyrosine derivatives group 1 1-23,13 group 2 24-52,14 group 3 53-

94,15 thiazolidinediones 95-100,13 indoles 101-110,25 fatty acids 134-

142,34 tyrosine derivatives bearing a small N-substituent 149-159,33  
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and thiazolidinedione-fatty acid hybrids 160-175,35 according to their 

origin from the references. These groups should be represented in the 

training and test sets in a balanced manner. Hence we randomly selected 

10% of the compounds from each group. The test set so obtained, 

containing compounds 8, 12, 28, 43, 50, 63, 70, 81, 92, 96, 105, 134, 

156, 170, 174, with pKi values well-distributed over the whole activity 

range, was set aside. For the remaining 129 compounds the best model 

found, m2, was obtained using the genetic algorithm variable selection 

module of MOE. 

 

pKi:  b_single  slogP  slogP_VSA3  MACCS49  MACCS93  MACCS97  MACCS132 

      MACCS140   MACCS141   MACCS152                              (m2) 

n = 129, r2 = 0.7909, s = 0.5887, F = 44.6, r2cv = 0.7471, scv = 0.6475 

 

   Three of the ten descriptors in m2 are also in m1. The absolute t 

values of all descriptors and the intercept in m2 are above 1.7. The 

highest pairwise descriptor intercorrelation in m2 is that of MACCS141 

and MACCS152, r2 = 0.69. 

   In the calculated vs observed-plot (Figure 4) the training set 

compounds are represented by closed symbols. 

   Y-randomization (25 independent experiments) resulted in a mean best 

r2 of 0.3217 (min 0.2305, max 0.3989, standard deviation 0.0439), with 

not a single best r2 (or q2) coming close to those of model m2. Likewise, 

description of the original pKi data by 10 out of 230 random 

pseudodescriptors (25 independent experiments) yielded a mean best r2 of 

0.4337 (min 0.3694, max 0.4903, standard deviation 0.0327). Thus the 

original r2 is separated from the mean best random r2 by eleven standard 

deviations, and m2 is thus not expected to be a chance correlation. 

   Application of m2 to the 15 test set compounds resulted in r2pred = 

0.6998. The predicted pKi values for the test set compounds are 

underlined in Table 1 and included in Figure 4 (open symbols).   

Models m1 and m2, as expected, result in similar calculated pKi values, 

as given in Table 1 and shown in Figure 5. 

 

   Application of models to low-activity compounds. For some low-activity 

compounds an upper bound of binding affinity to PPARγ (lower bound of Ki, 

upper bound of pKi) is given in the source publications. These are 

tyrosine derivatives 5, 177-181,13 and 88,15 indole derivatives 182-184,25 
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Figure 4. Calculated and observed pKi values for receptor binding of 
PPARγ agonists (model m2). Closed symbols represent fit values for the 
training set, open symbols represent predictions for the test set. 
 

 

the fatty acids capric, lauric, palmitic, stearic, arachidic, behenic, 

and erucic acid,34 and the TZD-fatty acid hybrids 185-188.35 

For these compounds pKi values were predicted using models m1 and m2, the 

results are shown in Table 5.  
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   As seen from Table 5, predictions are good for 5, and reasonable for 

capric and lauric acids and 184 only. In judging the other more or less 

incorrect (i.e. too high) predictions we should keep in mind that models 

m1 and m2 were not built on such low-activity compounds, i.e. all these 

predictions are extrapolations with respect to activity. As long as the 

values of descriptors that appear in the model are within the range 

spanned by the original compound set, models tend to predict activity 

values also in the range spanned by the original compounds.  

    Tyrosine derivatives 88 and 177-181 are predicted among the 18% 

lowest active tyrosines in the original compound set by both models. 

Indoles 182 and 183 are predicted among the lowest-active 60% of the 

original indoles by m1, and among the lowest 50% by m2. The TZD-fatty 

acid hybrids 185-188 are predicted among the lowest-active 31% (m1) or 

38% (m2) of their kind. However, a few fatty acids are wrongly predicted 

among the most active within their class.  
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Figure 5. pKi Values for receptor binding of PPARγ agonists calculated 
using models m1 and m2. 
 

 

   The explanation usually given for a bad prediction is that a compound 

is unique in some respect, and as such was not represented in the 

training set. In fact, 

177 is the only compound with a tetralone side chain, 

178 is the only example bearing a CH2 instead of a keto group in the side 

chain, 

179 is the only anilide instead of a ketone (side chain), 

180 is the only benzyl ester instead of a ketone (side chain), 
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Table 5. pKi Prediction for Low-Activity Compounds. 

Compound                         pKiexptl        pKipred (m1)     pKipred (m2) 

5                                <5.5           3.47          4.03 

88                               <5.5           7.38          7.36 

177                              <5.5           6.13          6.63 

178                              <5.5           6.17          6.21 

179                              <5.5           5.91          6.37 

180                              <5.5           6.20          6.71 

181                              <5.5           6.33          6.13 

182                              <4             5.99          5.79 

183                              <5.0           6.30          5.89 

184                              <5.0           4.92          5.30 

H3C(CH2)8COOH (capric)            <4.5           3.32          5.00 

H3C(CH2)10COOH (lauric)           <4.5           4.05          5.15 

H3C(CH2)14COOH (palmitic)         <4.5           4.99          5.44 

H3C(CH2)16COOH (stearic)          <4.5           5.28          5.58 

H3C(CH2)18COOH (arachidic)        <4.5           5.47          5.72 

H3C(CH2)20COOH (behenic)          <4.5           5.60          5.87 

H3C(CH2)7CH=CH(CH2)11COOH (erucic) <4.5           5.74          5.86 

185                              <5             6.11          6.27 

186                              <5             5.82          5.97 

187                              <5             6.24          6.26 

188                              <5             5.79          6.26 

 

 

181 is the only example of a meta-substituted tyrosine N-phenyl group,  

and 88 is unique in bearing another carboxylic acid function in the side 

chain instead of the benzoyl group. Further, 177, 179, and 180 are methyl 

esters rather than carboxylic acids, whereas there is only one methyl 

ester (3) in the training set. Finally, indoles 182 and 183 are the only 

ones bearing a benzyl or a phenyl group in position 3 of the indole 

nucleus, rather than the phenethyl group present in most of the other 

indols. These structural differences easily perceived by a chemist are 

probably not adequately reflected by the descriptors used. In fact, 

scrutinizing the descriptor values one finds that compounds 177-184 and 

88 are numerically within the ranges spanned by compounds 1-176 for all 

descriptors, except that 180 is out-of-range for PEOE_VSA+5, and 177-180 

are out-of-range for Q_VSA_FPNEG. These two descriptors are not included 
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in models m1 or m2. Similarly, for compounds 185-188 all descriptor 

values are within the original range, except a few descriptors not 

appearing in the models. 

    The fatty acids palmitic acid through erucic acid, being saturated or 

nearly saturated acyclic compounds, strongly differ in structure from 

most training set compounds. This is easily seen both by inspection and 

by their out-of-range values of several descriptors (none of which 

entered the models). This clearly suggests that it is inadequate to 

predict these compounds’ activities based on models m1 or m2. 

 

   B. Transactivation. The best multilinear regression equation we were 

able to find for gene activation by PPARγ activated by agonists (pEC50 

values) is model m3, made of 14 descriptors selected by the step-up 

procedure from a pool of 229 descriptors: 

 

pEC50:  PEOE_VSA_FPPOS   slogP   slogP_VSA0   sMR_VSA6   MACCS22 

       MACCS49  MACCS64   MACCS80  MACCS94  MACCS97  MACCS106 

       MACCS109  MACCS125  MACCS137                                (m3) 

n = 150, r2 = 0.6487, s = 0.7335, F = 17.80, r2cv = 0.5727, scv = 0.8089.  

 

A calculated vs observed-plot is given in Figure 6 for both fit and LOO-

crossvalidated data (closed and open symbols, respectively). 

   Note that of the 14 descriptors appearing in m3 three are also in m1, 

and three are also in m2. This seems to be more than coincidence: Binding 

is reasonably considered a prerequisite for transactivation. All pairwise 

descriptor intercorrelations in m3 have r2 < 0.35. 

   Though r2 = 0.65 is at the lower limit of what may be considered 

useful, m3 has s = 0.73 log units, appreciably smaller than the standard 

deviation of the experimental data, 1.18 log units. The differences 

between the crossvalidated and fitted statistics are not excessively 

large. The absolute t values of all descriptors and the intercept in m3 

are above 2.1, and F = 17.80 is far above the tabulated critical value 

1.77 (α = 5%) for 150 data points and 14 descriptors. However, the 

descriptor combination in m3 was selected from in principle 8.34·1021 

combinations of 14 out of 229 descriptors, and the model quality as 

described by r2, r2cv and F is lower than that of m1 or m2. The 

possibility of chance correlation therefore here seems to be worse than 

before. 
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Figure 6. Calculated and observed pEC50 values for transactivation by 
PPARγ agonists (model m3). Closed symbols represent fit, open symbols 
represent LOO-crossvalidated values. 
 

 

   Validation. The result of an additional crossvalidation, i.e. four 

times leave-one-quarter-out, is shown in Table 6. 

   In 25 independent y-randomization experiments, the mean best r2 was 

0.3469 (min 0.2870, max 0.4514, standard deviation 0.0435). Not a single 

best r2 or r2cv (q
2) value from the y-randomization experiments came close 

to the original r2 or q2 of m3. We also generated for our 150 compounds 

the values of 229 pseudo-descriptors made of random numbers, and tried to 
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Table 6. Results of Leave-One-Quarter-Out Crossvalidation of Model m3. 

Set to fit     r2(fit)    Set to predict     r2(pred) 

1, 2, and 3    0.6747         4              0.4547 

1, 2, and 4    0.6719         3              0.5038 

1, 3, and 4    0.6640         2              0.5596 

2, 3, and 4    0.6247         1              0.6512 

 

Average        0.6588                        0.5423 

 

 

describe the target pEC50 by a combination of these, applying the same 

descriptor selection procedure as above. In 25 independent such 

experiments the mean best r2 was 0.4543 (min 0.3966, max 0.5288, standard 

deviation 0.0368). The real r2 = 0.6487 (model m3) is five standard 

deviations away from the mean and thus is not expected to have arisen by 

chance. 

   The result of 106 bootstrap runs is r2bs = 0.6849, standard deviation 

0.0400. According to reference 53, this value does not point to any 

problem with model m3. The mean regression coefficients resulting from 

these 106 runs are all within 5% of those found for the original model.  

   Thus, all validation procedures demonstrate that m3, notwithstanding 

its lower quality compared to m1, is still statistically valid. 

 

   Transactivation using binding activity as a descriptor. Not 

surprisingly, there is a rather high correlation between pEC50 values 

(transactivation) and pKi values (binding) in our data set (r
2 = 0.6153, 

n = 118). It should therefore be possible to establish an activity-

activity relationship. Obviously, such a relation would allow prediction 

of pEC50 for those compounds only that have a pKi available. Further, it 

should be kept in mind that one of the assumptions for applicability of 

linear regression is violated here, the assumption of negligible errors 

in the independent variables. 

The best four-descriptor model we found is m4: 

 

pEC50:  pKi   PEOE_PC-   MACCS57    MACCS62                        (m4) 

n = 118, r2 = 0.7618, s = 0.6087, F = 90.34, r2cv = 0.7385, scv = 0.6378. 
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Compare s = 0.61 with the standard deviation of pEC50 in this compound 

population, 1.23 log units. Interestingly, in m4 the regression 

coefficient of pKi is close to unity, and the intercept may well be zero 

(Table 2). Bootstrapping (106 runs) resulted in r2bs = 0.7686, standard 

deviation 0.0332, not pointing to any problem with model m4. The mean 

regression coefficients and intercept resulting from these 106 runs are 

all within 5% of those found originally. 

 

                              DISCUSSION 

   Our models were subjected to (and passed) more validity tests than are 

usually performed, because we considered such tests necessary in view of 

the multitude of problems encountered. In our opinion, these problems are 

typical for many QSAR studies, and therefore we discuss them here in some 

detail. 

 

   Experimental data. In many QSAR studies one has to rely on a single 

given set of data, with no information on their quality available. The 

present study is an exception in that luckily we have some evidence on 

data quality (Figures 1 and 2). This evidence unfortunately points to low 

data quality. Dealing with biological phenomena, one probably cannot 

expect highly reproducible data. To enhance reproducibility and 

comparability, we included only data obtained under one and the same 

measurement protocol. On the other hand, the receptor binding data span 

molar concentrations differing by 4.5 orders of magnitude, and the 

transactivation data even span 5 orders of magnitude in molar 

concentrations. This alone leads us to expect a considerable scatter in 

the data. Who would expect reliable data of lengths ranging from one 

micrometer to ten centimeters, all measured with the same instrument? 

   In the case of transactivation, there is another fundamental problem. 

An EC50 value as published is defined as the concentration at which the 

respective compound produces 50% of maximal gene transactivation. 

However, the maximal gene transactivation is not usually defined 

unambiguously. In some publications it is the maximal activation that can 

be observed using the respective compound, in others it is the maximal 

effect seen with some standard compound, e. g. rosiglitazone (98). Unless 

standardized, EC50 values do not describe concentrations resulting in the 

same effect, they thus compare uncomparable things. This problem may be 

one of several factors contributing to the difficulties we and others had 
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in attempting to correlate pEC50 values with structure.
11,20,21 One may even 

question that a QSAR treatment of such data makes any sense at all.  

 

   Compound integrity. In most cases it is not assured that the measured 

effect is due to the agonist in the form applied, as opposed to some 

derivative or metabolite. For example, it is known that methyl esters are 

hydrolysed under physiological conditions. 

   An additional source of uncertainty in experimental data is 

stereochemistry. Many but not all of the agonists treated here are 

chiral, e.g. thiazolidinediones and tyrosine derivatives. 

Thiazolidinediones racemize under physiological conditions, e.g., for 

rosiglitazone racemization t1/2 at pH 7.2 was found to be 3 h.
36 

Consequently, there is no difference between individual enantiomers or 

the racemate in antidiabetic activity or in gene activation, effects that 

require days or >12 h, respectively, to be measured. Measurement of 

receptor binding, on the other hand, requires less time, and consequently 

IC50 for PPARγ binding of (S)-rosiglitazone was found 70 times lower than 

that of the R enantiomer.36 For tyrosine derivatives or their oxygen 

analogs racemization generally is not expected. In fact, the S enantiomer 

of an α–benzyloxy-phenylpropanoic acid was found 100-fold more potent in 

vivo than its R isomer. However, surprisingly for the corresponding α–

methoxy acid an as yet unexplained unidirectional isomerization of R into 

S was observed in a cell-based assay, and no enantiomer differentiation 

in vivo. Again, for the same compound in a PPARγ binding experiment IC50 

of the R enantiomer was 20-fold higher than that of the S isomer.37 Thus 

both TZDs and tyrosine derivatives are more active in S configuration. 

This is in accord with X-ray results of rosiglitazone/PPARγ complexes, in 

which rosiglitazone was found to have S configuration.16,17 

These experimental findings suggest not to stereocorrect racemate data 

obtained under racemizing conditions, or even to up-correct activity data 

obtained for pure S compounds measured under racemizing conditions. 

However, for most compounds it is not known whether or not (or how 

rapidly) racemization occurs under the particular experimental 

conditions.  

 

   Combining observations. In statistical data treatment, it is always 

problematic to combine observations on heterogenous samples, since a 
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correlation found for the combined sample may vanish within subgroups, or 

trends present in the subgroups may be obscured or even reversed in the 

combined sample. The compounds in our study form structurally distinct 

subgroups, such as tyrosine derivatives, TZDs, indoles, fatty acids, 

etc.. Therefore in Figure 7a the data for model m1 (the fit part of 

Figure 3) are displayed once more, this time resolved with respect to 

subgroups. Figure 7b shows corresponding plots for the subgroups. It is 

obvious that the only subgroup covering most of the activity range is 

tyrosine derivatives group 1. The most important result of this analysis 

is reassuring: Though the r2 value for the complete data set is certainly 

overoptimistic with respect to the subgroups, at least in all subgroups 

the same trend as in the combined sample is apparent. One may say that 

from the receptor’s point of view, the variation in the central part of 

the ligand structure seems to be of minor importance compared to the 

general structural pattern that may be described as “carboxylic acid or 

thiazolidinedione group linked to flexibly interconnected unsaturated 

(aromatic) moieties”. 

 

   Descriptors. All the available molecular descriptors take into 

consideration the whole molecule. As such they are very useful for 

describing simple physical properties that depend on the whole molecule, 

such as boiling point, solubility, logP, etc. For the same reason such 

descriptors are not well-suited to describe phenomena that depend on 

specific (but unknown) parts of the molecule, such as binding to a 

receptor. In other words, a large part of a molecule may be completely 

irrelevant with respect to such a phenomenon. For illustration consider 

the work of DeGrazia,54 in which a fluorescent derivative of farglitazar 

14 was taylored in such a manner as not to compromise binding to the 

receptor. This was achieved by linking the fluorescein moiety covalently 

to farglitazar in a position known from the X-ray structure of the 14/ 

PPARγ complex to point outside the binding pocket. The resulting compound 

14b had a Kd value of 61 nM, very similar to the Ki value of intermediate 

iodide 14a (50 nM), whereas most molecular descriptors will be largely 

different for 14b and 14a. 
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   Descriptor selection and risk of chance correlation. Livingstone and 

Salt45a extensively simulated multilinear regressions using random number 

dependent and independent variables for many combinations of numbers of 

compounds (n), numbers of descriptors in a QSAR equation (p), and number 

of descriptors considered for inclusion in a model (k). They fitted their 

simulation results by a highly nonlinear equation for calculation of a 

critical F value. This equation, however, is of no use in our case, since 

near the margins of the (n,p,k)space covered in reference 45a and outside 

that range errors may be high, and the characteristics of our models (n = 

144, p = 10, k = 230 (binding), and n = 150, p = 14, k = 229 

(transactivation)) are far outside that range. Therefore we had to 

perform our own experiments using nonsense (random) descriptors as 

described above. 

   The risk of chance correlation due to descriptor selection in QSAR was 

pointed out 33 years ago by Topliss et al.44a,b These papers were ahead of 

their time: Before 1979 most of the molecular descriptors now available, 

computer programs for generating descriptor values, and programs for 

descriptor selection were nonexisting, so that the problem then was a 

theoretical one. Now it has become urgent, as demonstrated by several 

publications in which descriptors are naively selected from a pool 

several times as large as the number of compounds. Since the size of the 

final descriptor pool is seldom reported in such studies, the risk of a 

chance correlation in most cases cannot be assessed by the reader. 
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Figure 7. Fit data from Figure 3, broken down by subgroups. Circles – 
tyrosine derivatives group 1; squares – tyrosine derivatives group 2; 
triangles – tyrosine derivatives group 3; crosses – thiazolidinediones; 
oblique crosses – indole derivatives; asterisks – fatty acids; diamonds – 
tyrosine derivatives of low molecular weight; reversed triangles – 
thiazolidinedione-fatty acid hybrids. 
 

 

   In our opinion, the quote by Estrada “It is desirable to have as many 

as possible molecular descriptors to characterize molecular structure but 

to include as few as possible into the QSAR/QSPR model”55 has to be 

amended. To have a large number of descriptors at our disposition is not 

simply a blessing, rather we should use them very cautiously. There is a 

real dilemma. In order not to fall victim of chance correlations we 

should include as few descriptors as possible in the pool to be 

considered by a selection algorithm. These, of course, should be those 
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that have a high probability of being useful, while at the same time we 

must not exclude the really relevant ones. That means we preferably 

should have some (hypothetical) knowledge of the solution before 

algorithmically treating a particular problem. This situation, however, 

is common in science: We can test hypotheses, but without a hypothesis we 

should not expect a good (or even the best) solution to result out of 

nothing. Obviously, lacking a hypothesis on the relevance of descriptors, 

critical validation of models is the more imperative. 

   The descriptor selection bias problem, though numerically considered 

mainly in the context of multilinear regression,44,45 is expected to occur 

generally whenever the optimum combination (for a certain purpose) of 

descriptors out of a large descriptor pool is selected, e.g. in the 

application of classification and regression trees (recursive 

partitioning), as well. 

 

   Domain of applicability. The foremost purpose of a QSAR model is 

prediction. For this to work reliably, it is important to define the 

model’s domain of applicability.56,57 That range obviously can span 

compounds only that are similar to those used for modeling both 

structurally and with respect to target activity. We included in our 

models the broadest possible selection of structures, i.e. all compounds 

with appropriate experimental values available, so that our compounds are 

more diverse than those treated previously. Nevertheless their diversity 

is far lower than one would like it to be. On the other hand, we should 

keep in mind the diversity/predictivity antagonism: The broader the 

structure range, the lower the quality of prediction. So when applying a 

model to predict a new compound’s activity, the chemist has to carefully 

judge the structural similarity, which is not always an easy task. There 

is a permanent temptation to use a model for prediction outside its range 

of applicability, e.g. trying to find in silico a new class of compounds 

with desired activity. Unless taken merely as a heuristic, this would be 

a systematic misuse of the model. 

   There is another problem associated with the range of applicability. 

Often in papers reporting biological activities, for some compounds an 

upper bound of activity is given, either because the biological test was 

unable to produce meaningful results above a certain concentration, or 

because the authors were not interested in compounds exhibiting low 

activity. In the absence of a real test set, it is tempting to apply a 
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model to such compounds, in the hope that the model will place them 

below, or at least in the lowest part of the range of activity 

considered. While with our models this worked reasonably, often it does 

not, for simple reasons. First, whereas these compounds may seem similar 

to those used for modeling with respect to structure, they are by 

definition not similar with respect to activity. The model is not 

calibrated, and consequently cannot be used for an activity range well 

below that of the compounds included. Second, there are cases where the 

out-of-range activity (i.e. the inactivity) of a compound cannot be 

explained by the values of some descriptors being out of range. In such 

cases, to maintain the central dogma of QSPR/QSAR (similar structures 

result in similar activities) we have to conclude that these compounds’ 

structures differ from those included in the model in a more subtle 

manner, e.g. in that they may be out-of-range with respect to a 

combination of descriptors, or with respect to a descriptor not 

considered. 

    From this it follows that for many cases of wrong prediction an 

“excuse” can be found in the uniqueness of the respective structure: Each 

chemical entity is unique in some respect, and it is common practice to 

argue (as we did above) that a particular mispredicted compound’s 

pecularity was not represented in the training set. This is, however, a  

weak argument in that it could be applied to many well-predicted 

compounds also, and even worse, it will apply to most compounds 

encountered in the future, as well. 

 

   Comparison between typical QSPR and typical QSAR situations. Most of 

the problems discussed above that are encountered in typical QSAR studies 

are of far less importance in QSPR. Thus, in QSPR experimental data are 

often more reliable, in that measurements are less difficult, and often 

values for the same compound measured by several independent research 

groups are available. Stereochemistry and flexible conformations are less 

of a problem in physical properties than in specific receptor-ligand 

binding. Physical properties are determined by the entirety of a 

molecular structure, whence whole-molecule descriptors are adequate for 

most QSPR problems. The fundamental assumption of linearity, risky as it 

is in MLR-QSPR, is highly dangerous in QSAR for several reasons: First, 

target variables in QSAR, unlike in QSPR, typically vary over several 

orders of magnitude. Second, biological effects, in particular those 
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measured in intact cells or even whole organisms, are often regulated by 

complex nonlinear mechanisms (regulatory circuits), so that we can expect 

an optimum value to exist for many descriptors. As a result of all this, 

r2 and F values are typically higher in QSPR than in QSAR, even if models 

contain fewer descriptors, so that descriptor intercorrelation and 

descriptor selection bias (chance correlation) are less of a problem in 

QSPR. Finally, a model’s range of applicability is often easily defined 

in QSPR, where the input compounds are selected according to structural 

criteria, whereas in QSAR the compounds included are defined by some 

biological activity and thus may represent various structural classes. 
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