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Abstract. A new software package MOLGEN–QSPR for the ex-
ploration of quantitative structure property relationships is intro-
duced. Practical results obtained using this software are presented.

1. Introduction

Recently we introduced a computer program MOLGEN–COMB [1]
that allows to generate virtual combinatorial libraries from a given
set of reactants and reactions. Our new software package MOLGEN–
QSPR provides methods for the study of quantitative structure prop-
erty relationships (QSPRs) in combinatorial libraries and the prediction
of property values for such virtual libraries. Figure 1 shows a simplified
flowchart of QSPR search and application. Algorithmic parts are high-
lighted in grey. Figure 2 is a screenshot of MOLGEN-QSPR’s graphical
user interface (GUI).

The input of MOLGEN–QSPR is a set of chemical compounds given
as molecular graphs together with values for a continuous target vari-
able representing the physicochemical property under consideration.
Examples are the boiling point or the density.

The QSPR search consists of three principal steps:

• structure preprocessing,
• descriptor computation,
• regression analysis.

There exist several opportunities for structure input:

Financial support by the Federal Ministry of Research and Technology is grate-
fully acknowledged.

1Corresponding author e–mail: ChristRckr@aol.com
1



2

 
Virtual library 
(structures only) 

Structural 
formulae 

 

Property 
values 

Descriptor 
computation 

Descriptor 
values 

Predicted property values for virtual library, 
promising candidates for synthesis 

Supervised statistical learning 
(regression, classification) 

Prediction 
function 

Application of  
prediction function 

Structural 
formulae 

Descriptor 
computation 

Descriptor 
values 

Real library 
(structures and properties) 
 

Figure 1. Flowchart of QSPR search and application

• structure import as MDL Mol– or SDfile2,
• structure generation by MOLGEN–COMB,
• manual structure input using the included molecular structure

editor MOLED.

Property values can be input from tabulator separated ASCII tables
as written by EXCEL or added manually in MOLGEN–QSPR’s GUI.
Structures and corresponding property values can be imported using
the format of CODESSA input files [2].

Structure preprocessing includes

• addition of H atoms, which are typically suppressed in electronic
representations of molecular graphs,

2MDL Mol– and SDfiles are a widespread exchange formats for molecular
structures based on connection tables. A detailed specification is available at
www.mdl.com
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Figure 2. Screenshoot of MOLGEN–QSPR’s GUI. Up-
per left window: Table of property and descriptor values.
Lower left window: Plot of experimental vs calculated
property values with a selection of 7 compounds. Upper
right window: Structures of selected compounds. Lower
right window: Table of calculated QSPRs.

• identification of aromatic bonds, which are often coded as al-
ternating single and double bonds, and

• computation of a 3D layout using a force field model [3].

The latter is necessary if geometrical descriptors are to be applied.
Molecular descriptors are used in order to map molecular structures

onto real numbers. Currently MOLGEN–QSPR provides 705 built–in
descriptors of various types:

• arithmetical descriptors (using information coded in the com-
pound’s molecular formula),

• topological descriptors (using information coded in the com-
pound’s constitution),

• geometrical descriptors (using 3D information coded in the com-
pound’s configuration and conformation),

• electrotopological and AI indices [4, 5],
• overall indices [6, 7],
• Crippen indices [8].
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A detailed specification of the available indices is provided in [9]. Be-
sides these indices substructure counts can be used as molecular de-
scriptors. MOLGEN–QSPR supplies an algorithm that generates sys-
tematically all substructures (with optional lower and upper limits for
the number of bonds) that occur in the library. User–defined substruc-
tures also can be counted.

Once the descriptor values are calculated, methods of supervised3

statistical learning [10] are applied in order to find prediction functions
that fit the target variable well. Along with ordinary least squares
regression (OLS, based on a QR–decomposition of the design matrix
defined by the descriptor values) and principal component regression
(using the singular value decomposition of the design matrix) there are
several sophisticated methods available via an interface to the (freely
available) statistical software package R [11]:

• regression trees [12],
• artificial neural networks [13, 14],
• support vector machines [15].

In order to avoid overfitting it is necessary to find small subsets of
descriptors that allow the calculation of good prediction functions. For
this purpose there is an algorithm included that performs an exhaustive
search for best subsets of descriptors for OLS regression. For problems
with large numbers of molecules and descriptors and/or big subsets
exhaustive search might be too time expensive. In order to handle
such problems MOLGEN–QSPR offers an algorithm for stepwise subset
selection.

The user may want to calculate several prediction functions for the
same QSPR problem. In order to select the best model one needs a
method for model assessment. An easy way is resubstitution, i.e. sub-
stituting descriptor values of the compounds of the real library into
the prediction function and comparing the results with the experimen-
tal property values. Usually one calculates the sum of squares of the
residuals (RSS) for this purpose.

However, a small RSS does not necessarily imply good predictive
power. The predictive ability of a prediction function is best measured
by an independent test set. Therefore MOLGEN–QSPR offers the pos-
sibility to define disjoint learning and test sets. For cases where the real
library is too small for partition into learning and test set, MOLGEN–
QSPR provides leave–one–out crossvalidation (based on OLS).

In addition several tools are included in MOLGEN–QSPR that exe-
cute elementary statistical tasks. For instance arithmetic mean, stan-
dard deviation, value distribution of descriptors and properties can be
computed as well as their correlation matrix.

3It is called ”supervised” learning because the presence of the target variable
guides the learning process and acts as a ”teacher”.
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In the following we describe two case studies of QSPRs which were
performed using MOLGEN–QSPR. Initially, we intended to use these
cases simply as tests for our program. However, the results obtained
were unexpected, and in retrospect they reveal typical traps to be
avoided in the use and interpretation of QSPR equations.

2. Boiling Points of Undecanes and Dodecanes

Boiling points of alkanes at atmospheric pressure (bp, measured in
◦C) are a classical proving ground for QSPRs since Wiener’s time
[16]. We recently collected experimental boiling points of alkanes and
(poly)cycloalkanes up to the decanes (saturated hydrocarbons of up to
10 carbon atoms) and produced for them multilinear correlations with
topological descriptors [17]. In that work, once more the utmost im-
portance became evident to use in QSPR work experimental property
values from highly reliable sources only.

To the best of our knowledge, boiling points of higher alkanes, such
as the undecanes and dodecanes, were never before correlated with
such descriptors, though a complete compilation of boiling points for
all 159 undecanes and all 355 dodecanes exists (stereoisomers not dis-
tinguished)4. These data come from a source thought to be particularly
reliable, the American Petroleum Institute Research Project 44, asso-
ciated with the name of F.D. Rossini. Therefore, using these data, we
established QSPR equations for the bps of undecanes and, separately,
of dodecanes. The best 2– and 3–descriptor correlations found are as
follows:

Undecanes: bp = 25.799MSD + 4.4696P (3) + 35.823,
r2 = 0.84264, s = 2.3664, n = 159,

bp = 1.7113W + 35.141H + 0.51917Z − 1031.5,
r2 = 0.89613, s = 1.9288, n = 159,

where MSD (mean square distance) is a topological index introduced
by Balaban [18], P (3) is the count of paths of length 3 [16], W is the
Wiener index [16, 19], H is the Harary index [20], and Z is the Hosoya
index [19].

Dodecanes: bp = 25.620MSD + 4.3113P (3) + 42.768,
r2 = 0.83502, s = 2.5285, n = 355,

4Selected Values of Properties of Hydrocarbons and Related Compounds. Sup-
plementary Vol. No. A–78 of the Thermodynamics Research Center (TRC) Hy-
drocarbon Project Publication, dated April 30, 1979, Tables 45a and 46a. (The
TRC Hydrocarbon Project was formerly the American Petroleum Institute Re-
search Project 44.) TRC, formerly located at the Chemical Engineering Division
of the Texas Engineering Experiment Station, Texas A&M University, College Sta-
tion, Texas, USA, is now at the National Institute of Standards and Technology
(NIST), Boulder, Colorado, USA.
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Figure 3. Bps of undecanes (2–descriptor model)

bp = 59.933MSD + 27.856H + 0.32152Z − 862.76,
r2 = 0.88734, s = 2.0924, n = 355.

The quality of these equations, as expressed by the r2 and s values,
is somewhat lower than desirable, this fact is reflected in Figures 3
– 6, scatterplots of experimental bps vs bps calculated by the above
equations for undecanes and dodecanes, respectively.

As seen in Figures 3 and 5, there is, in both cases, a minor population
of alkanes having experimental bps about 10◦C higher than expected
from the correlation valid for the majority of compounds. MOLGEN–
QSPR allows easy identification of those special compounds, clicking
on the symbols in the plot displays the structures. The special unde-
canes and dodecanes are shown in Figures 7 and 8. Interestingly, all
these compounds have one structural feature in common, the 2,2,4,4–
tetramethylpentane substructure. None of the majority compounds
contains this substructure, and each compound containing this sub-
structure is in the minor population. At this point we believed to have
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Figure 4. Bps of undecanes (3–descriptor model)

detected an interesting effect on the bp somehow associated with this
substructure.

However, to be sure that the effect was not an artifact due to in-
sufficient care in compound preparation and isolation, we asked Pro-
fessor R.C. Wilhoit of the Thermodynamics Research Center (TRC)
for more information on the origin of the undecanes and dodecanes
bp data. The response was quite unexpected5, in essence it said that

5Thanks are due to R.C. Wilhoit for his kind cooperation. The following is a
quote from his e–mail letter to C.R.: ”The tables you mention, 45a and 46a on
boiling points of C11 and C12 alkanes, have not been revised since 1956. However
you will find a Specific Reference sheet for them on pages a–ref–1580 through a–
ref–1607. The numbers there shown for each property refer to the list at the end
of each table. The entries in that list identify the authors of the original source of
data. The complete reference is given in the ”General List of References”: which is
in Volume XIV of the current set of tables. In tables published for about the past
25 years the complete references is given directly in the Specific Reference sheets.
In the Specific Reference sheet for table 45a, starting on page a–ref–1580, you will
see that numbers 4 and 12 are listed for most boiling points. 12 refers to ”American
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Figure 5. Bps of dodecanes (2–descriptor model)

most of the undecane and dodecane bp data in the TRC database3 are
not at all experimental, rather they were calculated using an empirical
QSPR equation, as described in a paper by Rossini [21]. Reading that
paper one finds that alkane bps were calculated therein according to
a Wiener–type equation, but a ”corrective term” of +10.6◦C was added
for exactly those compounds containing the 2,2,4,4–tetramethylpentane
substructure, for reasons not given in detail.

The ”effect” found in our investigation thus is nothing but an ar-
tifact due to the ”experimental” bp values in fact being calculated
values. The nice aspect of this story is that MOLGEN–QSPR was able

Petroleum Institute Research Project 44”. This means that the boiling point was
calculated from an empirical correlation. The procedure, number 4, identifies the
author, Greenshields–1. If you then look this up in the General List of References
you will find ”Greenshields, J.B., Thesis, Ohio State ...”. Actually this procedure
was published by the next entry, Greenshields and Rossini, J. Phys. Chem., 1958,
62, 271. ... Similarly for the C12 alkanes, Specific References for Table 46a, ... .
Numbers 1,5 identify those obtained by correlation by the same procedure.”
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Figure 6. Bps of dodecanes (3–descriptor model)

to detect the inconsistency in the data due to this ”corrective term”,
application of which thus seems not to have been a very good idea.
The lesson to be learnt for us is that one can never be careful enough
in the critical evaluation of experimental data.

In the meantime, the TRC is addressing the problem of both ex-
perimental and calculated data being contained in one and the same
database [22].

3. 17O NMR Chemical Shifts

In their book ”Molecular Structure Description — The Electrotopo-
logical State” [4] Kier and Hall wrote

”Two studies have been reported (Kier and Hall, 1990;
Hall et al., 1991) in which the E–State of oxygen atoms
in a series of ethers and a series of carbonyl compounds
was calculated. These indices were compared to the 17O



10

C11H24 1 C11H24 2 C11H24 3 C11H24 4

C11H24 5 C11H24 6 C11H24 7

Figure 7. Undecanes with unexpected ”experimental” bps
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Figure 8. Dodecanes with unexpected ”experimental” bps
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chemical shifts ... . The correlations between the E–
State values and the chemical shifts (∆) are very close.

For ethers: ∆ = 92.56S(-O-)− 441.65,
r2 = 0.99, s = 4.3, n = 10,

For carbonyls: ∆ = −27.77S(=O) + 834.48,
r2 = 0.97, s = 3.67, n = 9.

Clearly, the E–State indices encode relevant structure
information influencing this property.”

Here S(-O-) and S(=O) are the electrotopological state values of an
ether oxygen and a carbonyl oxygen atom, respectively.

3.1. Ethers. In the original paper [23] Kier and Hall correlated experi-
mental 17O chemical shifts (in ppm units, from a paper by Delseth and
Kintzinger [24]) of ten saturated acyclic ethers with the oxygen E–state
values, the QSPR equation reads

δ(17O) = 92.564S(-O-)− 441.65,
r = 0.995, s = 4.3, n = 10.

MOLGEN–QSPR was able to reproduce this result, as follows:

δ(17O) = 95.129S(-O-)− 454.88,
r2 = 0.99005, s = 4.2171, n = 10.

However, this equation is not the best single–descriptor model. Lin-
ear regression using the simple Randić index 1χ gives r2 = 0.99365,
s = 3.3679, and the Kier and Hall valence connectivity index 1χv gives
r2 = 0.99539, s = 2.8718.

More importantly, we stumbled over the fact that in the Delseth–
Kintzinger work there are experimental 17O shifts given not only for
the 10 ethers treated by Kier and Hall, but for 31 saturated acyclic
ethers altogether. For the 21 remaining ethers or for the combined
sample of all 31 ethers, the above equation or the best model based
on S(-O-) for the respective sample is far less satisfying, as are the
alternative models using 1χ or 1χv.

Figure 9 is a plot of δ(17O) vs S(-O-) for all 31 ethers, where the
compounds are identified by the ID numbers attributed to them in [24],
and the 10 compounds contained in the smaller sample are represented
by filled circles.

For the complete ether sample (n = 31), the best multilinear single–,
2–, and 3–descriptor models, as found using MOLGEN–QSPR, are:

1 descriptor: S(-O-), r2 = 0.5994, s = 19.6,
2 descriptors: 2χ, 2χv, r2 = 0.9759, s = 4.9,
3 descriptors: S(-O-), 2χ, 2χv, r2 = 0.9935, s = 2.6.

These models are best as long as the descriptor pool to choose from con-
tains arithmetic, topological and geometrical descriptors only. When
substructure counts are additionally included in the descriptor pool,
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Figure 9. δ(17O) of 31 ethers vs S(-O-). Compounds:
1 dimethyl ether, 2 ethyl methyl ether, 3 methyl propyl
ether, 4 methyl isopropyl ether, 5 methyl butyl ether,
6 methyl isobutyl ether, 7 methyl sec–butyl ether, 8
methyl tert–butyl ether, 9 methyl pentyl ether, 10 methyl
neopentyl ether, 11 methyl sec–pentyl ether, 12 methyl
isopentyl ether, 13 methyl neohexyl ether, 14 diethyl
ether, 15 ethyl propyl ether, 16 ethyl isopropyl ether,
17 ethyl butyl ether, 18 ethyl isobutyl ether, 19 ethyl
sec–butyl ether, 20 ethyl tert–butyl ether, 21 ethyl pentyl
ether, 22 ethyl neopentyl ether, 23 ethyl sec–pentyl ether,
24 dipropyl ether, 25 propyl isopropyl ether, 26 diiso-
propyl ether, 27 isopropyl tert–butyl ether, 28 dibutyl
ether, 29 di–sec–butyl ether 30 di–tert–butyl ether, 31
diisopentyl ether. Compounds in italics are contained in
the 10–compound sample.
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Figure 10. δ(17O) of 31 ethers vs 3–descriptor model

better models are obtained. The best models found for the 31 ethers
are:

1 descriptor: n(C-C-O), r2 = 0.9645, s = 5.8,
2 descriptors: n(C-C-O), n(C-C(-C)-O), r2 = 0.9802, s = 4.4,
3 descriptors: n(C-C-O), n(C-C(-C)-O), P (3), r2 = 0.9942, s = 2.4,

where n(C-C-O) is the occurrence number of the substructure C-C-O,
and P (3) is the number of paths of length 3 in the molecule. Figure 10
is a plot of experimental vs calculated values for δ(17O) by the latter
model.

The reason why Kier and Hall treated the 10–compound sample
only seems to be that they intended to compare their model [25] to
a model published earlier by Fliszar [26]. This author had published
a correlation of 17O chemical shifts with the net atomic charge of the
ether O atom, as obtained by ab initio (STO–3G) calculations, for
exactly these 10 ethers, rather than for all 31 ethers with known 17O
NMR chemical shifts.
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Figure 11. δ(17O) of 31 acyclic saturated aldehy-
des/ketones vs S(=O). Compounds: 1 ethanal, 2
propanal, 3 2–methylpropanal, 4 2,2–dimethylpropanal, 5
butanal, 6 pentanal, 7 3–methylbutanal, 8 3,3–dimethyl-
butanal, 9 2–methylpentanal, 10 propanone, 11 bu-
tanone, 12 3–methylbutanone, 13 2,2–dimethylbutanone,
14 pentan–2–one, 15 hexan–2–one, 16 4–methylpentan–
2–one, 17 4,4–dimethylpentan–2–one, 18 3,3,4,4–tetra-
methylpentan–2–one, 19 pentan–3–one, 20 2–methyl-
pentan–3–one, 21 2,2–dimethylpentan–3–one, 22 hexan–
3–one, 23 5–methylpentan–3–one, 24 4,4–diethylhexan–
3–one, 25 2,4–dimethylpentan–3–one, 26 2,2,4–trimethyl-
pentan–3–one, 27 2,5–dimethylhexan–3–one, 28 2,2,4,4–
tetramethylpentan–3–one, 29 2,2–dimethylhexan–3–one,
30 heptan–4–one, 31 2,6–dimethylheptan–3–one. Com-
pounds in italics are contained in the 9–compound sam-
ple.
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Figure 12. δ(17O) of 31 acyclic saturated aldehy-
des/ketones vs 3–descriptor model

3.2. Carbonyl Compounds. Here things are similar to the ether
case: For nine saturated acyclic aldehydes/ketones, in the original pa-
per [27] a correlation between the 17O chemical shifts (in ppm, from
another paper by Delseth and Kintzinger [28]) and the E–state of the
oxygen atom was found:

δ(17O) = −27.768S(=O) + 834.48,
r = 0.986, s = 3.7, n = 9.

MOLGEN–QSPR reproduced this result, as follows:

δ(17O) = −27.772S(=O) + 834.51,
r2 = 0.96575, s = 3.6697, n = 9.

However, there are experimental 17O chemical shift values provided in
reference [27] for no fewer than (by coincidence again) 31 saturated
acyclic aldehydes and ketones. For the complete sample the above
equation or the corresponding best equation based on S(=O) gives
very poor results. Figure 11 is a scatterplot of δ(17O) vs S(=O) for
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all 31 aldehydes/ketones, the 9 compounds contained in the smaller
sample are represented by filled circles.

For the 31 aldehydes/ketones, the best single–, 2–, and 3–descriptor
models now found are:

1 descriptor: S(=O), r2 = 0.3332, s = 14.4,
2 descriptors: S(=O), H, r2 = 0.8817, s = 6.2,
3 descriptors: S(=O), n(C), mwc(8), r2 = 0.9109, s = 5.5.

where H is the Harary index [20], n(C) is the number of carbon atoms
in the molecule, and mwc(8) is the molecular walk count of length 8
[29, 30].

These models are best as long as the descriptor pool to choose
from contains arithmetic, topological and geometrical descriptors only.
When substructure counts are additionally included in the descrip-
tor pool, better models are obtained. The best models for the 31
aldehydes/ketones are:

1 descriptor: n(C-C=O), r2 = 0.5680, s = 11.6,
2 descriptors: S(=O), H, r2 = 0.8817, s = 6.2,
3 descriptors: S(=O), n(C-C-C-C=O), n(C-C(-C)-C(=O)-C),

r2 = 0.9475, s = 4.2.

Figure 12 is a plot of experimental vs calculated values for δ(17O) by
the latter model.

Again the reason for Kier and Hall to treat 9 compounds only was
the opportunity to compare their model [25] to Fliszar’s [26], in which
the 17O chemical shifts were correlated with the net atomic charges
of the carbonyl O atoms from STO–3G calculations for exactly these
rather than for all 31 aldehydes/ketones with known 17O NMR chemical
shifts.

There are at least three lessons to be recalled here.

(1) The range of validity of a QSPR equation should not be exag-
gerated (”carbonyl compounds” instead of ”otherwise unsubsti-
tuted saturated acyclic aldehydes and ketones”).

(2) It is a fatal error to use, in a statistical consideration, a selection
of cases instead of all available cases.

(3) It is always advisable both for those producing and for those
using a QSPR equation to critically examine the primary liter-
ature.
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