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The limits of a recently proposed computer method for finding all 

distinct substructures of a chemical structure are systematically 

explored within comprehensive graph samples which serve as supersets of 

the graphs corresponding to saturated hydrocarbons, both acyclic (up to 

n = 20) and (poly)cyclic (up to n = 10). Several pairs of smallest 

graphs and compounds are identified that cannot be distinguished using 

selected combinations of invariants such as combinations of Balaban’s 

index J and graph matrix eigenvalues. As the most important result, it 

can now be stated that the computer program NIMSG, using J and distance 

eigenvalues, is safe within the domain of mono- through tetracyclic 

saturated hydrocarbon substructures up to n = 10 (oligocyclic decanes) 

and of all acyclic alkane substructures up to n = 19 (nonadecanes), i.e. 

it will not miss any of these substructures. For the regions surrounding 

this safe domain, upper limits are found for the numbers of 

substructures that may be lost in the worst case, and these are low. 

This taken together means that the computer program can be reasonably 

employed in chemistry whenever one is interested in finding the 

saturated hydrocarbon substructures. As to unsaturated and heteroatom 

containing substructures, there are reasons to conjecture that the 

method’s resolving power for them is similar.        
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                            INTRODUCTION 

   Substructures and subgraphs of chemical structures are becoming 

increasingly important in description of chemical compounds’ properties 

and reactivity, 1a in similarity and complexity considerations, 1b,c  in 

physical and biological property prediction, 1d and in automatic structure 

elucidation from spectral data. 2 We recently developed computer programs 

capable of finding all connected subgraphs in simple graphs, 3 all 

connected substructures and distinct connected substructures in colored 

multigraphs and chemical structures, 4 and all connected substructures and 

subgraphs and distinct connected substructures and subgraphs in colored 

multigraphs and chemical structures. 5 In such an endeavour the ability to 

distinguish very similar graphs is obviously a central issue, and is in 

fact the limiting factor. Since a fast computer method for reliably 

discriminating all nonisomorphic graphs was not at our hands, the best 

we could do was to use graph invariants of discriminating power as high 

as possible. 

   A graph herein is understood to be simple, connected, and undirected. 

It contains n vertices, m edges, and c = m – n + 1 cycles. A graph 

invariant is a number calculated for a graph from its structure 

according to a well-defined procedure, its value is independent of how 

the graph is drawn or how its vertices are numbered. Being a simple 

number, a graph invariant carries less information than the graph 

itself, and this loss of information results in graph invariants being 

more or less degenerate, i.e. nonisomorphic graphs may have the same 

value of a particular invariant.  

   An easy-to-calculate graph invariant which is nevertheless considered 

rather well-discriminating is Balaban’s index J. 6 Index J is of low 

degeneracy (has high discriminating power) compared to several other 

well-known graph invariants, in that the smallest J-equivalent simple 
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graphs have n=6 vertices, the smallest J-equivalent tree (=acyclic) 

graphs are found in the n=10 family, and the smallest J-equivalent 

alkanes (4-trees) are dodecanes. 7  

   A better resolution should be achievable by using, instead of one 

graph invariant, a sequence of several graph invariants, 8 such as a 

spectrum. A graph’s spectrum is the sequence of the eigenvalues of its 

adjacency matrix, a one-dimensional array of n graph invariants. The 

spectrum still contains less information than the graph itself, i.e. two 

nonisomorphic graphs may exhibit the same spectrum, in which case they 

are called isospectral or cospectral graphs. The smallest isospectral 

connected simple graphs have n=6 vertices, 9,10  the smallest isospectral 

tree graphs are in the n=8 family, 9 and the smallest isospectral alkanes 

are nonanes. 11 These numerical results, when compared to those for index 

J cited above, are somewhat unexpected, they emphasize the 

extraordinarily high resolving power of J. Whether or not index J is 

generally better resolving than the spectrum was never investigated. It 

was, however, proven that for increasing n the fraction of isospectral 

trees among all trees approaches 1, i.e. “almost all trees are 

cospectral”. 12  

   More discriminant than the usual (adjacency matrix) spectrum seems to 

be the graph distance spectrum, i.e. the sequence of eigenvalues of the 

graph distance matrix: 13 The smallest distance-isospectral trees have 

n=17 vertices and are alkane (heptadecane) graphs, 14,15  while the smallest 

distance-isospectral simple graphs were not known at the beginning of 

this study. So neither simple-number graph invariants nor spectra seem 

to uniquely characterize a graph, i.e. discriminate it from all 

nonisomorphic graphs. 

   We had found that as a rule of thumb pairs of J-equivalent graphs are 

discriminated by their adjacency or distance spectra (see Figure 1), and 
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conversely typical isospectral and even distance-isospectral graphs are 

discriminated by their J values (see Figure 2). So we formulated the 

working hypothesis that this will be generally the case, at least for 

small and not too complex (molecular) graphs. Accordingly, we decided to 

use for graph discrimination in our computer program NIMSG the 

combination of J and adjacency or distance eigenvalues. 4 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 
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Figure 2  
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   Of course a pair of graphs that are at the same time J-equivalent and  

isospectral cannot be distinguished by this method. Thus if two such 

graphs appear both as subgraphs in a graph, the result will be a wrong 

(low by 1) number of distinct subgraphs. Before the present study was 

initiated we knew of only few such pairs of graphs, e.g. two regular 

cubic (degree of each vertex equals 3) simple graphs of 40 vertices 16, or 

two non-molecular graphs of 16 vertices (all vertex degrees equal to 

6). 17 These graphs are shown in Figure 3, further examples can be found 

in the work of Weisfeiler 18 and Mathon. 19 In the context of molecular 

structures all these graphs seemed irrelevant, most for their high 

vertex degrees (>4), the first-mentioned pair for their size in 

combination with their regularity and the unfavorable geometry of any 

3D-realization. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3  
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   Treating the complete graphs K n up to n=7 as tests of our program 

NIMSG had resulted in the correct numbers of distinct subgraphs. 20 So we 

knew that at least up to and including n=7 no such “dangerous” pairs of 

simultaneously J-equivalent and isospectral simple graphs exist. The aim 

of the present work was to find out whether or not such dangerous pairs 

are a realistic threat in finding molecular substructures, in particular 

in the application of NIMSG to molecular structures. This was to be done 

by systematically identifying the smallest such pairs of graphs.  

 

                      RESULTS AND DISCUSSION 

   So questions arose as to the the size and identities of the smallest 

simple graphs simultaneously being J-equivalent and  isospectral, and to 

the nature of such graphs – “molecular” or not. Unfortunately, no simple 

definition of a molecular graph is available. Therefore in the following 

we treat the sets of connected simple graphs, of connected simple 4-

graphs, of trees and of 4-trees up to a certain vertex number, each of 

which is a superset of cyclic or acyclic saturated hydrocarbon graphs, 

respectively.  

   New hardware now allowed us to fully treat the complete graph K 8 . As 

it happened, the number of distinct connected subgraphs of n=8 found was 

low, 11111 instead of 11117, 20 even if all eight adjacency matrix 

eigenvalues or all eight distance matrix eigenvalues were used together 

with J for discrimination (instead of the routinely employed two 

adjacency or two distance eigenvalues). In detail, our procedure found 

1578 instead of 1579 distinct connected simple graphs of n=8, m=14 

(corresponding to heptacyclic octanes), 1512 instead of 1515 distinct 

connected simple graphs of n=8, m=15 (octacyclic octanes), and 1288 

instead of 1290 distinct connected simple graphs of n=8, m=16 

(nonacyclic octanes). Each distinct subgraph found occurs in many copies 
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within K 8 due to its high symmetry, e.g. a typical occurrence number of 

n=8, m=16 subgraphs in K 8 is 23040. For n=8, all other m (7 ≤ m ≤ 13 and 

17 ≤ m ≤ 28), the numbers of distinct connected simple graphs found were 

correct. 20 At this stage we knew that there must exist a few pairs of 

graphs with the sought-after combination of properties for n=8, m=14 to 

16, but so far it was impossible to identify them. Comfortably, it was 

also clear that hepta-, octa- and nonacyclic graphs of 8 vertices are 

not molecular graphs. 21  

   The key to the successful identification reported here is a complete 

generation free of redundancy of all connected simple graphs of n=8, 

m=14, 15, 16, that was now performed using MOLGEN 4.0. 22 Within MOLGEN 

4.0, isomorphic graphs are identified and nonisomorphic graphs are 

distinguished by a canonical numbering scheme. Calculation of J and the 

eigenvalues for all 1579 graphs of n=8, m=14, 1515 graphs of n=8, m=15, 

and 1290 graphs of n=8, m=16, and sorting by J or/and the eigenvalues 

within each class led to the following observations: 23 

(i) There are many pairs, triplets, and higher tuples of J-equivalent 

graphs in each of these classes. 24 

(ii) There are many pairs and several triplets of isospectral and even 

distance isospectral graphs in these graph classes. 

(iii) For n=8, there are exactly the following 6 pairs of graphs which 

are simultaneously J-equivalent and isospectral: 

m=14 class (heptacyclic octanes): 1 and 2 shown in Figure 4; 

m=15 class (octacyclic octanes):  3 and 4,  

                                  5 and 6,   

                                  7 and 8;  

m=16 class (nonacyclic octanes):  9 and 10,  

                                 11  and 12.   

Four of these are planar graphs ( 1,2,6,8 ), the others are nonplanar.  
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Figure 4 

 

   Surprisingly, within each such pair of graphs even the distance 

matrix eigenvalues coincide, i.e. these graphs are pairwise not only J-

equivalent and isospectral, but even distance-isospectral. 25 Furthermore, 

the Wiener index W and Hosoya index Z values (and their building blocks 

p(G,k)) pairwise coincide. In fact these graphs are “topological twin 

graphs” in the sense of Hosoya, 26 but being J-equivalent they are even 

more similar to one another than required by the definition of 

topological twins. 27 Furthermore, with respect to the number of edges 

graphs 1 and 2 are smaller than Hosoya’s smallest topological twins. 

These graphs are genetically related, they form two families: From 1 

both 3 and 5 can be formed by addition of an edge, and adding the 

respective other edge to either of these results in 9. Likewise, from 2 

(the twin of 1) by adding an edge 4 and 6 (the twins of 3 and 5) can be 

formed, and either of these leads to 10  (the twin of 9) by adding the 

respective other edge. The second family is formed by 7, its twin 8, and 

11  and its twin 12 , where the latter result from addition of an edge to 

either of the former. As anticipated, all these graphs are non-molecular 
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graphs due to vertex degrees exceeding 4. 

  

   Thus a partial answer to the question on the limits of validity of 

our working hypothesis above was found. However, from these findings the 

following questions arose: Are distance spectra really more 

discriminating than adjacency spectra? How frequent are J-equivalent 

graphs, isospectral graphs, distance-isospectral graphs, graphs both J-

equivalent and isospectral, graphs both J-equivalent and distance-

isospectral among the graphs of n>8, and in particular among the 

molecular graphs of that size? What are the smallest molecular graphs 

simultaneously J-equivalent and isospectral / distance-isospectral? 

 

   Graphs of n ≤≤≤≤ 10. To get an idea on possible answers to these 

questions we decided first to systematically look for degeneracies in J 

and adjacency and distance spectra within the set of all connected 

simple graphs of up to n=10, which using MOLGEN 4.0 seemed to be a 

realistic task. 

  Thus all connected simple graphs of 1, 2, …, 10 vertices (nearly 12 

million graphs) were generated using MOLGEN 4.0 in classes of constant 

numbers of vertices and edges, their J values and adjacency and distance 

spectra were calculated, the numbers of distinct J values and distinct 

adjacency and distance spectra were determined via sorting by J or the 

eigenvalues, respectively (two spectra are distinct if they differ in at 

least one eigenvalue). The results are shown in Tables A-F. In the 

tables every fifth row is underlined for better orientation. Table A 

gives the numbers of connected simple graphs in classes of constant n 

and m, as known 20 and as generated by MOLGEN 4.0. These numbers serve as 

reference values against which to compare the entries in Tables B-F. 

Table B gives the numbers of distinct J values within each n,m-class, 28 
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Tables C and D show the numbers of distinct adjacency spectra and 

distinct distance spectra. Tables E and F give the numbers of distinct 

combinations of J and adjacency spectra, and of J and distance spectra, 

respectively, for the same classes of graphs. Tables B-F also show in  

italics  the resolution of the respective graph invariant (combination), 

i.e. each italic entry is the entry left to it divided by the 

corresponding entry in Table A. In the Tables the “dangerous” region, 

the range where the particular invariant (combination) cannot uniquely 

characterize all graphs, is shaded.   

 

               Tables A, B, C, D, E, F around here                        

 

   Tables B-F all give qualitatively the same picture: The resolutions 

(discriminating powers) of the graph invariants gradually drop for 

increasing n. For increasing m within each n the discriminating powers 

initially drop, then pass through a minimum (printed in bold), finally 

approaching 1 again. The latter feature is explained by the fact that 

for increasing m the numbers of distinct graphs first increase, but then 

decrease again until the second-highest and highest m classes contain 

only one graph each, the K n-minus-an-edge and K n graphs, so degeneracy in 

these classes cannot exist.  

   Huge differences are seen in the discriminating power of the graph 

invariants considered here:  

i) Index J is very good for acyclic and oligocyclic graphs (the few 

first entries in each column), i.e. the domain of real molecular 

species. In that region J is even better than the adjacency spectrum. 

However, down the columns, i.e. for polycyclic graphs, J’s resolution 

sharply drops, so that most graphs are better resolved by their spectra.  

The different behaviour of J for acyclic and polycyclic graphs may be 
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understood: J exploits the differences in the (topological) distances 

between vertices in a graph, more exactly the differences between the 

distance sums. In going from a tree to a polycycle, long distances are 

replaced by shorter ones, those that are present in any graph. In the 

extreme case, the K n, all distances are 1 and all distance sums equal n -

1. So in that direction the distances (and their sums) tend to equalize 

for the vertices in a graph, and between isomeric graphs as well.     

ii) The distance spectrum is always at least as discriminating as the 

adjacency spectrum.  

iii) The combinations of J and spectra, particularly J and the distance 

spectrum, are unrivalled, as expected. 29 In Table F in each column the 

first five resolution entries are 1, that is, the domain of acyclic to 

tetracyclic graphs (saturated hydrocarbons) of up to n = 10 is “safe” if 

the combination of J and distance spectrum is used for discrimination. 

 

   4-graphs of n ≤≤≤≤ 10. Program NIMSG for finding distinct substructures 

was developed primarily for chemistry, where one is mostly interested in 

acyclic through oligocyclic graphs (e.g. for n ≤ 10, n-1 ≤ m ≤ ~n+5), and 

in particular in graphs of vertex degrees not exceeding 4, the valency 

of carbon (so-called 4-graphs). The above procedure was therefore 

repeated for simple connected 4-graphs, the graph sample most closely 

approximating the acyclic and oligo- through polycyclic saturated 

hydrocarbons, up to n=10. The results are shown in Tables G-L. Contrary 

to naïve expectation, the resolution in this sample is not decisively 

better than in the sample of all graphs, so that the resolution problem 

essentially remains the same. Though the numbers of 4-graphs (Table G) 

are lower than those of all graphs (Table A), and often far lower, 

particularly in higher m classes, the 4-graphs are a more uniform group, 

so finding differences among them is more difficult. Index J suffers 
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most from this fact. 

 

             Tables G, H, I, J, K, L around here                        

 

   The observations made in the sample of all graphs are reproduced in 

the 4-graphs. From Table L it again (and necessarily) follows that all 

acyclic to tetracyclic saturated hydrocarbons of up to at least n = 10 

are distinguished by the combination of J and distance spectrum. 

   The pair of smallest J-equivalent and  isospectral 4-graphs was 

identified in the n=9, m=12 class (tetracyclic nonanes, Table K), graphs 

13  and 14 ; the pair of smallest J-equivalent and  distance-isospectral 4-

graphs was found in the n=9, m=13 class (pentacyclic nonanes, Table L), 

graphs 15  and 16 . These graphs are shown in Figure 5. Though as 4-graphs 

they fulfill the formal condition for molecular graphs and though they 

are planar graphs, a chemist will doubt the viability of their molecular 

counterparts, due to their presumably extremely strained nature: No 

reasonable geometric structures (having usual bond lengths, bond angles 

and dihedral angles) will be available to such hypothetical hydrocarbon 

molecules. Graphs 13  and 14  correspond to substituted tetracyclooctanes 

of very unusual geometry, more specifically, 13  depicts a bridged 

[3.2.1]propellane, 14  a doubly annelated bicyclo[1.1.1]pentane. 30 15  and 

16  correspond to pentacyclononanes, the former to a doubly bridged 

[3.3.1]propellane, the latter to a bridged [3.2.1]propellane. Not 

surprisingly, not a single compound containing any of the four 

polycyclic frameworks of Figure 5 is listed in the Beilstein or the CAS 

Registry file. 
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Figure 5 

 

   In the n=10 domain, the smallest pair of J-equivalent and isospectral 

4-graphs was identified (Table K) in the m=13 class (tetracyclic 

decanes), and the smallest pair of J-equivalent and distance-isospectral 

4-graphs was found to have m=14 edges (pentacyclic decanes, Table L). 

Their structures differ from those shown in Figure 5 only in that they 

bear an additional vertex attached to the one marked with a dot. 

   From these smallest examples of simultaneously J-equivalent and 

(distance-) isospectral 4-graphs it is concluded that such graphs 

probably are too complex, too polycyclic for their molecular 

counterparts to be capable of existence. Other 4-graph pairs of n=9 or 

10 being J-equivalent and (distance-) isospectral have even higher m 

values, meaning that molecular counterparts would contain even more 

cycles than those found above, and therefore will tend to be even more 

strained. This means that it is reasonably safe to use the combination 

of J and (distance) spectrum for identifying distinct molecular 

substructures and molecular subgraphs, at least in the size range 

investigated here. 

   Finally, since NIMSG uses along with J only two (distance) 

eigenvalues rather than the complete (distance) spectrum for 

discrimination among subgraphs, for the sample of 4-graphs we repeated 
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the described procedure, but using only two adjacency eigenvalues or two 

distance eigenvalues. By systematic variation it was found that the 

combinations λ2 and λ3, and δ1 and δn (used in two published variants of 

NIMSG4) are not optimal. The most discriminating combinations we were 

able to find are λ3 and λn (the third and the last adjacency eigenvalues) 

and δ2 and δn-1  (the second and second-last distance eigenvalues). As a 

consequence, NIMSG was now improved accordingly. The results shown in 

Tables M and N allow to estimate the “safety” of the new NIMSG versions, 

or the risk of obtaining too few distinct substructures/subgraphs. As 

was to be expected, the results in Table M are somewhat inferior to 

those in Table K, those in Table N are inferior to those in Table L. 

However, resolution losses due to using only two instead of all 

eigenvalues appear in the high m region only, that is for graphs 

certainly not molecular. 

 

                       Tables M, N around here                        

 

   Tree graphs of n ≤≤≤≤ 20. For trees (uppermost entry in each column in 

Tables A-N) the resolution of the combinations J and adjacency spectrum 

and J and distance spectrum is perfect in our graph sample of n ≤ 10, as 

expected (recall that the first degeneracy of the adjacency spectrum and 

of the distance spectrum for trees are known to occur for n=8 and n=17, 

respectively). To fathom corresponding limits we additionally generated 

all trees of up to n = 20 and searched their J values and spectra. 31 The 

results are given in Table O. Where differences are found between the 

resolutions of J and the spectra for tree graphs, single index J is more 

discriminating than the complete adjacency spectrum, but less 

discriminating than the distance spectrum. First degeneracies of both 

J/spectrum combinations are encountered for n = 20, there are two pairs 
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of J-equivalent and  isospectral such trees ( 17/18  and 19/20  in Figure 

6), and of these one pair ( 19/20 ) is even distance isospectral. All 

these trees are 4-trees, i.e. alkanes, eicosanes. In both pairs the 

structures differ in a position exchange of ethyl and gem-dimethyl 

substituents, as was discussed earlier. 7a 

 

                       Tables O, P around here                        

 

  4-trees of n ≤≤≤≤ 20. Results for all alkanes C nH2n+2  of up to n = 20, 

generated using MOLGEN 4.0, are given in Table P. Here as for the 

general trees J is more discriminant than the adjacency spectrum, but 

less than the distance spectrum. Within the alkanes the resolution of J 

is somewhat higher, that of the adjacency spectrum is somewhat lower 

than within all trees. It was also checked (not shown in the Table) that 

use of λ3 and λn instead of all adjacency eigenvalues and of δ2 and δn-1  

instead of all distance eigenvalues (the NIMSG procedures) does not 

compromise the complete discrimination among alkanes of up to n = 19 

(the nonadecanes).  

 

 

 

 

 

 

 

 

 

 

Figure 6 
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   Concluding remarks . Let us emphasize here once more that structure 

discrimination by combinations of graph invariants (as done in NIMSG) 

seems to be a simple but only approximate solution to a difficult 

problem. Here we considered graphs corresponding to a superset of 

saturated hydrocarbons (of rather low carbon number) only, so we cannot 

say anything about the discrimination of real chemical structures other 

than saturated hydrocarbons. Most molecular structures, containing 

multiple bonds and heteroatoms, are to be represented by colored 

multigraphs. Obviously, there are many more colored multigraphs than 

simple graphs for each vertex number n, so that their discrimination 

seems to be even more difficult. On the other hand, we carefully 

included information on multiple bonds and heteroatoms into J and the 

spectra used in NIMSG, 4,32  hopefully raising the discriminating power of 

the procedure to a level sufficient for practical purposes. Further, in 

mathematical graph theory experience is that the graph isomorphism 

problem is more difficult for simple graphs than for colored 

multigraphs, the former lacking distinguishing features. To test this 

point would require to have a comprehensive sample of molecular colored 

multigraphs, which obviously is not at hand for any n.          

 

   After proving that “almost all trees are cospectral”, Schwenk raised 

the question whether the same is true for almost all graphs. 12 He did, 

however, not answer this question, nor did he give a conjecture, due to 

considerable differences in the mathematical properties of trees on one 

side and (general) graphs on the other. We here obtained at least some 

experimental information relevant to this issue. In the adjacency 

spectrum column in Table O, resolution values oscillate and only slowly 

decrease for increasing n, so that one would probably not have predicted 
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Schwenk’s result. In comparison, the resolution values in Table C 

rapidly and monotonically decrease for increasing n, so that a 

forteriori  it may seem probable that they drop below 0.5 for some higher 

n (At resolution 0.5 each graph on average has a non-distinguished 

mate).   

   It is tempting to ask similar questions with respect to the other 

graph invariant (combinations) considered here. The resolution of J for 

general graphs rapidly decreases for increasing n (Table B), dropping to 

0.31 for n=10 already, so that from this experimental point of view 

almost all graphs are J-equivalent (i.e. have a J-equivalent mate). The 

situation is less clear for J and the trees. Though J is still one of 

the best-discriminating simple invariants for trees (as we saw it is 

even better than the adjacency spectrum in this respect, Table O), our 

data do not exclude the possibility that almost all trees are J-

equivalent. This may seem paradoxic, but it is not a contradiction.  

On the limited data obtained here for the distance spectrum and the 

J/spectrum combinations we do not want to speculate. Their resolutions 

also drop for increasing n, but slowly and not always monotonically, so 

that it seems possible but by no means clear that statements similar to 

the above are true for them. 
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(24) We note in passing that having the necessary software we also 

determined the triplet of smallest isospectral 4-graphs (n=8, m=10, 
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tetracyclo[2.2.2.0 1,3 .0 1,4 ]octane, and 1-methyltetracyclo[3.2.0.0 1,3 .0 2,7 ]-

heptane). Recently an isospectral triplet of n=9, m=16 and an 

isospectral quadruplet of n=9, m=19 were published. 26b  Further we 

identified the pair of smallest distance-isospectral connected simple 
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graphs, which have n=7, m=10, corresponding to tetracyclo-

[3.1.1.0 1,3 .0 3,5 ]heptane and tetracyclo[2.2.1.0 1,3 .0 1,5 ]heptane.  

(25) In fact, this was not so surprising, after these graphs could not 

be pairwise distinguished using J and the distance eigenvalues.  

(26)(a) Hosoya, H.; Nagashima, U.; Hyugaji, S. Topological Twin Graphs. 

Smallest Pair of Isospectral Polyhedral Graphs with Eight Vertices. J.  

Chem. Inf. Comput. Sci.  1994 , 34 , 428-431. (b) Hosoya, H.; Ohta, K.; 

Satomi, M. Topological Twin Graphs II. Isospectral Polyhedral Graphs 

With Nine and Ten Vertices. MATCH – Commun. Math. Comput. Chem . 2001 ,   

44 , 183-200. 
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01,4 .0 2,6 .0 2,7 .0 6,8 ]octane, 2 to heptacyclo[4.2.0.0 1,3 .0 1,7 .0 2,4 .0 2,5 .0 5,8 ]-

octane.    
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always sorts by n and m, we are not interested in such degeneracies 

here. It is well-known that graphs of different  n can share the same J 
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(29) Initially we were concerned that J and the distance spectrum, both 

being derived from the distance matrix, might tend to exhibit 

degeneracies for the same pairs of graphs. Fortunately, as foreseen 

already from the results shown in Figures 1 and 2, such concerns did not 

materialize to a large extent. However, the moderate improvement in the 

resolution of the distance spectrum on addition of J compared to the 

large improvement in the resolution of the adjacency spectrum on 
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addition of J (Tables O/P) may be interpreted to be partially due to 

such an effect. 

(30) The lower homologs of 13  and 14  lacking the methyl group are 

neither J-equivalent nor isospectral. 

(31) Program GRADPART (Grüner, T., Diploma Thesis, University of 

Bayreuth, 1995). 
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Figure Captions 
 
Figure 1.  Pairs of J-equivalent but not isospectral graphs. 
 
Figure 2.  Pairs of isospectral but not J-equivalent graphs. The last 4 
pairs are even distance-isospectral. 
 
Figure 3.  Pairs of graphs that are both J-equivalent and isospectral 
(and distance-isospectral). 
 
Figure 4.  Smallest graphs that are pairwise both J-equivalent and 
isospectral (and moreover distance-isospectral).  
 
Figure 5.  Pair of smallest 4-graphs that are both J-equivalent and 
isospectral (top) and pair of smallest 4-graphs that are both J-
equivalent and distance-isospectral (and isospectral, bottom). For the 
meaning of black dots see text. 
 
Figure 6.  Two pairs of both J-equivalent and isospectral eicosanes. The 
bottom pair is distance-isospectral as well. These are the smallest 
alkane graphs having these properties. 
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Table Captions 
 
Table A. Numbers of graphs with n vertices and m edges for n  ≤ 10.  
 
Table B. Numbers of distinct J values and resolution by J  for graphs of n ≤ 10.  
 
Table C. Numbers of distinct adjacency spectra and resolution by adjacency spectra  for 
graphs of n ≤ 10.  
 
Table D. Numbers of distinct distance spectra and resolution by distance spectra  for 
graphs of n ≤ 10.  
 
Table E. Numbers of graphs with distinct combination of J an d adjacency spectrum and 
resolution by this combination  for n ≤ 10.  
 
Table F. Numbers of graphs with distinct combination of J an d distance spectrum and  
resolution by this combination  for n ≤ 10.  
 
Table G. Numbers of 4-graphs with n vertices and m edges for  n ≤ 10.  
 
Table H. Numbers of distinct J values and resolution by J  for 4-graphs of n ≤ 10.  
 
Table I. Numbers of 4-graphs with distinct adjacency spectru m and resolution by  
adjacency spectrum  for n ≤ 10.  
 
Table J. Numbers of 4-graphs with distinct distance spectrum  and resolution by distance  
spectrum  for n ≤ 10.  
 
Table K. Numbers of 4-graphs with distinct combination of J and adjacency spectrum and 
resolution by this combination  for n ≤ 10.  
 
Table L. Numbers of 4-graphs with distinct combination of J and distance spectrum and 
resolution by this combination  for n ≤ 10.  
 
Table M. Numbers of 4-graphs with distinct combination of J,  λ3 and λn and resolution by  
this combination  for n ≤ 10.  
 
Table N. Numbers of 4-graphs with distinct combination of J,  δ2 and δn-1  and resolution  
by this combination  for n ≤ 10.  
 
Table O . Numbers of distinct values, and resolution  of J, adjacency spectrum, distance 
spectrum, combination of J and adjacency spectrum, and combination of J and distance 
spectrum, for trees of n ≤ 20. 
 
Table P  Numbers of distinct values, and resolution  of J, adjacency spectrum, distance 
spectrum, combination of J and adjacency spectrum, and combination of J and distance 
spectrum, for 4-trees (alkanes C nH2n+2) of n ≤ 20. 
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Table A. Numbers of graphs with n vertices and m edges for n  ≤ 10.  
 
 
  n  1   2   3   4   5    6     7       8        9       10 
m 
 0   1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6  
 6               1   5   13    11 
 7                   4   19    33      23 
 8                   2   22    67      89       47 
 9                   1   20   107     236      240      106 
10                   1    14    132      486       797       657  
11                        9   138     814     2075     2678 
12                        5   126    1169     4495     8548 
13                        2    95    1454     8404    22950 
14                        1    64    1579    13855    53863 
15                        1     40     1515     20303    112618  
16                             21    1290    26631   211866 
17                             10     970    31400   361342 
18                              5     658    33366   561106 
19                              2     400    31996   795630 
20                              1      220     27764   1032754  
21                              1     114    21817  1229228 
22                                     56    15558  1343120 
23                                     24    10096  1348674 
24                                     11     5984  1245369 
25                                      5      3247   1057896  
26                                      2     1635   827086 
27                                      1      770   595418 
28                                      1      344   394820 
29                                             148   241428 
30                                              63    136370  
31                                              25    71293 
32                                              11    34652 
33                                               5    15767 
34                                               2     6757 
35                                               1      2768  
36                                               1     1102 
37                                                      428 
38                                                      165 
39                                                       66 
40                                                       26  
41                                                       11 
42                                                        5 
43                                                        2 
44                                                        1 
45                                                        1  
 
Σ    1   1   2   6  21  112   853   11117   261080 1 1716571 
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Table B. Numbers of distinct J values and resolution by J  for graphs of n ≤ 10.  
 
 
  n  1   2   3   4   5      6           7           8            9            10 
m 
 0   1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6    1 
 6               1   5   13   1     11   1 
 7                   4   19   1     33   1       23   1 
 8                   2   21 0.955    67   1       88 0.989       47   1 
 9                   1   17 0.850  107   1      235 0.996      240   1       105 0.991  
10                   1    13  0.929   128  0.970     480  0.988      792  0.994      644  0.980  
11                        9   1    121 0.877     793 0.974     2058 0.992     2626 0.980  
12                        5   1    100 0.794    1088 0.931     4417 0.983     8377 0.980  
13                        2   1     72 0.758   1239 0.852     8085 0.962    22421 0.977  
14                        1   1     50 0.781    1160 0.735    12694 0.916    51997 0.965  
15                        1    1     34  0.850     956  0.631    16875  0.831   105918  0.941  
16                                  20 0.952     727 0.564    18923 0.711   189264 0.893  
17                                  10   1      513 0.529   18419 0.587   294705 0.816  
18                                   5   1      351 0.533    15940 0.478   394460 0.703  
19                                   2   1      229 0.573    12560 0.393   454946 0.571  
20                                   1    1      142  0.645     9238  0.333   459506  0.445  
21                                   1   1       85 0.746     6493 0.298   416763 0.339  
22                                               48  0.857     4439 0.285  348105 0.259  
23                                               23  0.958     2937 0.291   272470 0.202  
24                                               11    1      1883 0.315   202590 0.163  
25                                                5    1      1172  0.361   144260  0.136  
26                                                2    1       705 0.431    99228 0.120  
27                                                1    1       401 0.521    66345 0.111  
28                                                1    1       219 0.637    43425 0.110 
29                                                            113 0.764    27863 0.115  
30                                                             55  0.873    17586  0.129  
31                                                             24 0.960    10833 0.152  
32                                                             11   1      6505 0.188  
33                                                              5   1      3769 0.239  
34                                                              2   1      2089 0.309  
35                                                              1    1      1111  0.401  
36                                                              1   1       569 0.516  
37                                                                          276 0.648  
38                                                                          128 0.776  
39                                                                           58 0.879  
40                                                                           25  0.962  
41                                                                           11   1 
42                                                                            5   1 
43                                                                            2   1 
44                                                                            1   1 
45                                                                            1    1 
 
     1   1   2   6  21  107 0.955   762 0.893    8200 0.738   138749 0.531  3648987 0.311  
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Table C. Numbers of distinct adjacency spectra and resolution by adjacency spectra  for 
graphs of n ≤ 10.  
 
 
  n  1   2   3   4   5      6          7           8             9             10 
m 
 0   1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6    1 
 6               1   5   13   1     11   1 
 7                   4   18 0.947   33   1       22 0.957  
 8                   2   22   1     63 0.940     84 0.944       42 0.894  
 9                   1   20   1    103 0.963     225 0.953      224 0.933       102 0.962  
10                   1    14    1    125  0.947     445  0.916     706  0.886       596  0.907  
11                        9   1    132 0.957     764 0.939     1895 0.913      2447 0.914  
12                        5   1    120 0.952    1078 0.922     4013 0.893      7562 0.885  
13                        2   1     93 0.979    1352 0.930     7613 0.906     20590 0.897  
14                        1   1     63 0.984    1470 0.931    12403 0.895    47500 0.882  
15                        1    1     39  0.975    1412  0.932    18280  0.900    100231  0.890  
16                                  20 0.952    1213 0.940    23844 0.895    186998 0.883  
17                                  10   1      923 0.952    28175 0.897    320119 0.886  
18                                   5   1      625 0.950    29995 0.899    494753 0.882  
19                                   2   1      385 0.963    28883 0.903    702885 0.883  
20                                   1    1      214  0.973    25106  0.904    910360  0.881 
21                                   1   1      112 0.982    19874 0.911   1084029 0.882  
22                                               55  0.982    14234 0.915   1185376 0.883  
23                                               24    1      9307 0.922   1191702 0.884  
24                                               11    1      5554 0.928   1101401 0.884  
25                                                5    1      3045  0.938    937402  0.886  
26                                                2    1      1548 0.947    735474 0.889  
27                                                1    1       738 0.958    530739 0.891  
28                                                1    1       334 0.971    353419 0.895  
29                                                            144 0.973    216990 0.899  
30                                                             62  0.984    123286  0.904  
31                                                             25   1      64811 0.909  
32                                                             11   1      31765 0.917  
33                                                              5   1      14586 0.925  
34                                                              2   1       6320 0.935  
35                                                              1    1       2614  0.944  
36                                                              1   1       1053 0.956  
37                                                                           414 0.967  
38                                                                           162 0.982  
39                                                                            65 0.985  
40                                                                            26    1 
41                                                                            11   1 
42                                                                             5   1 
43                                                                             2   1 
44                                                                             1   1 
45                                                                             1    1 
 
 
     1   1   2   6  21  111 0.991   821 0.962   10423 0.938   236064 0.904   10375797 0.886  
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Table D. Numbers of distinct distance spectra and resolution by distance spectra  for 
graphs of n ≤ 10.  
 
 
  n  1   2   3   4   5    6       7            8            9             10 
m 
 0   1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6  
 6               1   5   13    11   1 
 7                   4   19    33   1       23   1 
 8                   2   22    67   1       89   1        47   1 
 9                   1   20   107   1      236   1       240   1        106   1 
10                   1    14    131  0.992     484  0.996      796  0.999       657    1 
11                        9   135 0.978     810 0.995     2069 0.997      2676 0.999  
12                        5   123 0.976    1154 0.987     4473 0.995      8528 0.998  
13                        2    93 0.979    1423 0.979     8333 0.992     22880 0.997  
14                        1    63 0.984    1523 0.965    13679 0.987     53586 0.995  
15                        1     39  0.975    1446  0.954    19911  0.981    111796  0.993  
16                             21   1     1227 0.951   25852 0.971    209671 0.990  
17                             10   1      928 0.957    30128 0.959    356153 0.986  
18                              5   1      632 0.960    31556 0.946    550142 0.980  
19                              2   1      385 0.963    29855 0.933    774502 0.973  
20                              1    1      214  0.973    25690  0.925    995890  0.964  
21                              1   1      112 0.982    20137 0.923  1171682 0.953  
22                                          55 0.982    14367 0.923   1263321 0.937  
23                                          24   1      9352 0.926   1251178 0.928  
24                                          11   1      5572 0.931   1140892 0.916  
25                                           5    1      3052  0.940    960432  0.908  
26                                           2   1      1550 0.948    746945 0.903  
27                                           1   1       739 0.960    535900 0.900 
28                                           1   1       334 0.971    355429 0.900  
29                                                       145 0.980    217714 0.902  
30                                                        62  0.984    123533  0.906  
31                                                        25   1      64909 0.910  
32                                                        11   1      31798 0.918  
33                                                         5   1      14591 0.925  
34                                                         2   1       6325 0.936  
35                                                         1    1       2619  0.946  
36                                                         1   1       1057 0.959  
37                                                                      416 0.972  
38                                                                      162 0.982  
39                                                                       65 0.985  
40                                                                       26    1 
41                                                                       11   1 
42                                                                        5   1 
43                                                                        2   1 
44                                                                        1   1 
45                                                                        1    1 
 
     1   1   2   6  21  112   842 0.987   10785 0.970   247984 0.950   10975530 0.937  
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Table E. Numbers of graphs with distinct combination of J an d adjacency spectrum and 
resolution by this combination  for n ≤ 10.  
 
 
  n  1   2   3   4   5    6     7         8             9            10 
m 
 0   1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6  
 6               1   5   13    11 
 7                   4   19    33      23   1 
 8                   2   22    67      89   1        47   1 
 9                   1   20   107     236   1       240   1        106   1 
10                   1    14    132      486    1       797    1        657    1 
11                        9   138     814   1      2075   1       2678   1 
12                        5   126    1169   1      4494 0.999      8548   1 
13                        2    95    1454   1      8401 0.999     22949 0.999  
14                        1    64    1578 0.999    13849 0.999     53854 0.999  
15                        1     40     1512  0.998   20282  0.999    112587  0.999  
16                             21    1288 0.998    26566 0.998    211763 0.999  
17                             10     970   1     31268 0.996    361019 0.999  
18                              5     658   1     33163 0.994    560215 0.998  
19                              2     400   1     31727 0.992    793471 0.997  
20                              1      220    1     27505  0.991  1028231  0.996  
21                              1     114   1     21647 0.992   1221366 0.994  
22                                     56   1     15442 0.993   1331659 0.991  
23                                     24   1     10036 0.994   1334090 0.989  
24                                     11   1      5957 0.995   1229374 0.987  
25                                      5    1      3238  0.997   1043152  0.986  
26                                      2   1      1633 0.999    815323 0.986  
27                                      1   1       770   1     586926 0.986 
28                                      1   1       344   1     389474 0.986  
29                                                  148   1     238458 0.988  
30                                                   63   1     134959  0.990  
31                                                   25   1      70681 0.991  
32                                                   11   1      34437 0.994  
33                                                    5   1      15697 0.996  
34                                                    2   1       6741 0.998  
35                                                    1    1       2765  0.999  
36                                                    1   1       1102   1 
37                                                                 428   1 
38                                                                 165   1 
39                                                                  66   1 
40                                                                  26    1 
41                                                                  11   1 
42                                                                   5   1 
43                                                                   2   1 
44                                                                   1   1 
45                                                                   1    1 
 
     1   1   2   6  21  112   853   11111 0.999  25 9737 0.995  11612987 0.991  
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Table F. Numbers of graphs with distinct combination of J an d distance spectrum and 
resolution by this combination  for n ≤ 10.  
 
 
  n  1   2   3   4   5    6     7         8             9            10 
m 
 0    1 
 1       1 
 2           1 
 3           1   2 
 4               2   3 
 5                1    5     6  
 6               1   5   13    11 
 7                   4   19    33      23   1 
 8                   2   22    67      89   1        47   1 
 9                   1   20   107     236   1       240   1        106   1 
10                   1    14    132      486    1       797    1        657    1 
11                        9   138     814   1      2075   1       2678   1 
12                        5   126    1169   1      4495   1       8548   1 
13                        2    95    1454   1      8403 0.999     22950   1 
14                        1    64    1578 0.999    13853 0.999     53862 0.999  
15                        1     40     1512  0.998   20296  0.999    112612  0.999  
16                             21    1288 0.998    26596 0.999    211837 0.999  
17                             10     970   1     31313 0.997    361226 0.999  
18                              5     658   1     33205 0.995    560691 0.999  
19                              2     400   1     31753 0.992    794373 0.998  
20                              1      220    1     27513  0.991  1029620  0.997  
21                              1     114   1     21648 0.992   1223130 0.995  
22                                     56   1     15442 0.993   1333361 0.993  
23                                     24   1     10036 0.994   1335375 0.990  
24                                     11   1      5957 0.995   1230147 0.988  
25                                      5    1      3238  0.997   1043527  0.986  
26                                      2   1      1633 0.999    815449 0.986  
27                                      1   1       770   1     586960 0.986 
28                                      1   1       344   1     389484 0.986  
29                                                  148   1     238460 0.988  
30                                                   63   1     134959  0.990  
31                                                   25   1      70681 0.991  
32                                                   11   1      34437 0.994  
33                                                    5   1      15697 0.996  
34                                                    2   1       6741 0.998  
35                                                    1    1       2765  0.999  
36                                                    1   1       1102   1 
37                                                                 428   1 
38                                                                 165   1 
39                                                                  66   1 
40                                                                  26    1 
41                                                                  11   1 
42                                                                   5   1 
43                                                                   2   1 
44                                                                   1   1 
45                                                                   1    1 
 
     1   1   2   6  21  112   853   11111 0.999   259910 0.996   11622140 0.992  
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Table G. Numbers of 4-graphs with n vertices and m edges for  n ≤ 10.  
 
 
 n 1  2  3  4  5   6    7     8      9       10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18 
 8             2  18   56    73     35 
 9             1  14   79   182    185       75 
10             1    8    79    326     573       475  
11                 3   59   430   1278     1792 
12                 1   31   427   2161     4875 
13                      9   298   2768    10162 
14                      2   134   2616    16461 
15                           35    1714     20346  
16                            6    707    18436 
17                                 154    11477 
18                                  16     4399 
19                                          845 
20                                           59  
 
Σ  1  1  2  6 21  78  353  1929  12207    89402  
 
 
 
 
Table H. Numbers of distinct J values and resolution by J  for 4-graphs of n ≤ 10.  
 
 
 n 1  2  3  4  5     6          7          8          9            10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5    1 
 6          1  5  12   1     9   1 
 7             4  17   1    29   1     18   1 
 8             2  17 0.944   56   1     72 0.986     35   1 
 9             1  11 0.786  79   1    181 0.995    185   1        75   1 
10             1    7  0.875   75  0.949   320  0.982    570  0.995      468  0.986  
11                 3   1    47 0.797   414 0.963   1271 0.995     1767 0.986  
12                 1   1    18 0.581   379 0.888   2122 0.982     4799 0.984  
13                           3 0.333  214 0.718   2612 0.944     9966 0.981  
14                           1 0.500    57 0.425   2246 0.859    15863 0.964  
15                                      6  0.171   1158  0.676    18780  0.923  
16                                      1 0.167   287 0.406    15447 0.838  
17                                                 25 0.162     7834 0.683  
18                                                  1 0.063    2007 0.456  
19                                                              215 0.254  
20                                                               11  0.184 
 
   1  1  2  6 21  73 0.936  317 0.898  1662 0.862  10512 0.861   77232 0.864  
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Table I. Numbers of 4-graphs with distinct adjacency spectru m and resolution by  
adjacency spectrum  for n ≤ 10.  
 
 
 n 1  2  3  4  5   6       7          8           9            10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9   1 
 7             4  17   29   1     18   1 
 8             2  18   54 0.964    69 0.945     30 0.857 
 9             1  14   76 0.962  175 0.962    174 0.941       73 0.973  
10             1    8    77  0.975   310  0.951    526  0.918      430  0.905 
11                 3   58 0.983   414 0.963   1195 0.935     1669 0.931  
12                 1   31   1    411 0.963   2008 0.929     4481 0.919  
13                      9   1    285 0.956   2571 0.929     9388 0.924  
14                      2   1    133 0.933  2455 0.938    15086 0.916  
15                                35    1    1636  0.954    18832  0.926  
16                                 6   1     656 0.928    17061 0.925  
17                                           147 0.955    10767 0.938  
18                                            16   1      4179 0.950  
19                                                         801 0.948  
20                                                          57  0.966  
 
   1  1  2  6 21  78  345 0.977  1856 0.962  11414 0.935    82824 0.926  
 
 
 
 
Table J. Numbers of 4-graphs with distinct distance spectrum  and resolution by distance  
spectrum  for n ≤ 10.  
 
 
 n 1  2  3  4  5   6    7       8           9           10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18   1 
 8             2  18   56    73   1      35   1 
 9             1  14   79   182   1     185   1        75   1 
10             1    8    79    325  0.997    572  0.998      475    1 
11                 3   59   430   1    1276 0.998     1790 0.999  
12                 1   31   426 0.998   2161   1      4864 0.998  
13                      9   298   1    2764 0.999    10158 0.999  
14                      2   134   1    2610 0.998    16447 0.999  
15                           35    1    1709  0.997    20323  0.999  
16                            6   1     699 0.989    18396 0.998  
17                                      152 0.987   11444 0.997  
18                                       16   1      4376 0.995  
19                                                    833 0.986 
20                                                     59    1 
 
   1  1  2  6 21  78  353  1927 0.999  12179 0.998    89240 0.998  
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Table K. Numbers of 4-graphs with distinct combination of J and adjacency spectrum and 
resolution by this combination  for n ≤ 10.  
 
 n 1  2  3  4  5   6    7     8        9             10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18 
 8             2  18   56    73     35   1 
 9             1  14   79   182    185   1        75   1 
10             1    8    79    326     573    1       475    1 
11                 3   59   430   1278   1      1792   1 
12                 1   31   427   2160 0.999     4875   1 
13                      9   298   2765 0.999    10161 0.999  
14                      2   134   2611 0.998    16454 0.999  
15                           35    1702  0.993    20329  0.999  
16                            6    691 0.977   18404 0.998  
17                                 151 0.981    11430 0.996  
18                                  16   1      4363 0.992  
19                                               83 0 0.982 
20                                                59    1 
 
   1  1  2  6 21  78  353  1929  12167 0.997    89247 0.998  
 
 
 
 
Table L. Numbers of 4-graphs with distinct combination of J and distance spectrum and 
resolution by this combination  for n ≤ 10.  
 
 n 1  2  3  4  5   6    7     8        9            10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18 
 8             2  18   56    73     35   1 
 9             1  14   79   182    185   1        75   1 
10             1    8    79    326     573    1       475    1 
11                 3   59   430   1278   1      1792   1 
12                 1   31   427   2161   1      4875   1 
13                      9   298   2767 0.999    10162   1 
14                      2   134   2614 0.999    16460 0.999  
15                           35    1709  0.999    20341  0.999  
16                            6    699 0.989    18423 0.999  
17                                 152 0.987   11458 0.998  
18                                  16   1      4376 0.995  
19                                               83 3 0.986 
20                                                59    1 
 
   1  1  2  6 21  78  353  1929  12189 0.999   89329 0.999  
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Table M. Numbers of 4-graphs with distinct combination of J,  λ3 and λn and resolution by  
this combination  for n ≤ 10.  
 
 
 n 1  2  3  4  5   6    7        8           9            10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18   1 
 8             2  18   56    73   1      35   1 
 9             1  14   79   182   1     185   1        75   1 
10             1    8    79    326    1     573    1       475    1 
11                 3   59   430   1    1278   1      1792   1 
12                 1   31   427   1    2160 0.999     4875   1 
13                      9   298   1    2765 0.999    10161 0.999  
14                      2   134   1    2611 0.998    16454 0.999  
15                           34  0.971  1700  0.992    20329  0.999  
16                            6   1     690 0.976    18404 0.998  
17                                      149 0.968    11428 0.996  
18                                       12 0.750    4361 0.991  
19                                                    826 0.978  
20                                                     55  0.932 
 
   1  1  2  6 21  78  353  1928 0.999  12158 0.996    89235 0.998  
 
 
 
 
Table N. Numbers of 4-graphs with distinct combination of J,  δ2 and δn-1 and resolution  
by this combination  for n ≤ 10.  
 
 
 n 1  2  3  4  5   6    7        8          9            10 
m 
 0 1 
 1    1 
 2       1 
 3       1  2 
 4          2  3 
 5           1   5    5  
 6          1  5  12    9 
 7             4  17   29    18   1 
 8             2  18   56    73   1      35   1 
 9             1  14   79   182   1     185   1        75   1 
10             1    8    79    326    1     573    1       475    1 
11                 3   59   430   1    1278   1      1792   1 
12                 1   31   427   1    2161   1      4875   1 
13                      9   298   1    2767 0.999    10162   1 
14                      2   134   1    2614 0.999    16460 0.999  
15                           34  0.971  1707  0.996    20341  0.999  
16                            6   1     697 0.986    18422 0.999  
17                                      150 0.974    11454 0.998  
18                                       12 0.750    4369 0.993  
19                                                    830 0.982  
20                                                     54  0.915 
 
   1  1  2  6 21  78  353  1928 0.999  12179 0.998    89309 0.999  
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Table O . Numbers of distinct values, and resolution  of J, adjacency spectrum, distance 
spectrum, combination of J and adjacency spectrum, and combination of J and distance 
spectrum, for trees of n � 20. 
 
                   J         adj spectrum   dist sp ectrum   J/adj sp    J/dist sp 
 n     #        #    res        #     res      #      res      #     res     #     res  
 
 1       1        1   1          1    1         1    1         1   1        1   1 
 2       1        1   1          1    1         1    1         1   1        1   1 
 3       1        1   1          1    1         1    1         1   1        1   1 
 4       2        2   1          2    1         2    1         2   1        2   1 
 5        3         3    1          3     1         3     1         3    1        3    1 
 6       6        6   1          6    1         6    1         6   1        6   1 
 7      11       11   1         11    1        11    1        11   1       11   1 
 8      23       23   1         22  0.957       23    1        23   1       23   1 
 9      47       47   1         42  0.894       47    1        47   1       47   1 
10     106       105  0.991       102   0.962      106     1       106    1      106    1 
11     235      234 0.996       204  0.868      235    1       235   1      235   1 
12     551      537 0.975       488  0.886      551    1       551   1      551   1 
13    1301     1290 0.992      1078  0.829     1301    1      1301   1     1301   1 
14    3159     3026 0.958      2723  0.862     3159    1      3159   1     3159   1 
15    7741      7609  0.983      6403   0.827     7741     1      7741    1     7741    1 
16   19320    18158 0.940     16479  0.853    19320    1     19320   1    19320   1 
17   48629    47480 0.976     40313  0.829    48628  0.999    48629   1    48629   1 
18  123867   114600 0.925    106135  0.857   123865  0.999   123867   1   123867   1 
19  317955   308063 0.969    271295  0.853   317949  0.999   317955   1   317955   1 
20  823065    749284  0.910    724455   0.880   823051   0.999   823063  0.999  823064  0.999  
 
 
 
 
 
 
Table P . Numbers of distinct values, and resolution  of J, adjacency spectrum, distance 
spectrum, combination of J and adjacency spectrum, and combination of J and distance 
spectrum, for 4-trees (alkanes C nH2n+2) of n � 20. 
 
                   J         adj spectrum   dist sp ectrum   J/adj sp    J/dist sp 
 n     #        #    res        #    res       #     res       #     res     #     res  
 
 1       1        1   1          1   1          1   1          1   1        1   1 
 2       1        1   1          1   1          1   1          1   1        1   1 
 3       1        1   1          1   1          1   1          1   1        1   1 
 4       2        2   1          2   1          2   1          2   1        2   1 
 5        3         3    1          3    1          3    1          3    1        3    1 
 6       5        5   1          5   1          5   1          5   1        5   1 
 7       9        9   1          9   1          9   1          9   1        9   1 
 8      18       18   1         18   1         18   1         18   1       18   1 
 9      35       35   1         30  0.857       35   1         35   1       35   1 
10      75        75    1         73   0.973       75    1         75    1       75    1 
11     159      159   1        136  0.855      159   1        159   1      159   1 
12     355      349  0.983      307  0.865      355   1        355   1      355   1 
13     802      799  0.996      652  0.813      802   1        802   1      802   1 
14    1858     1808  0.973     1580  0.850     1858   1       1858   1     1858   1 
15    4347      4305   0.990     3484   0.801     4347    1       4347    1     4347    1 
16   10359     9923  0.958     8573  0.828    10359   1      10359   1    10359   1 
17   24894    24516  0.985    19786  0.795    24893  0.999    24894   1    24894   1 
18   60523    57331  0.947    50340  0.832    60521  0.999    60523   1    60523   1 
19  148284   145206  0.979   122453  0.826   148279  0.999   148284   1   148284   1 
20  366319    342886   0.936   313498   0.856   366308   0.999   366317  0.999  366318  0.999  


