
Algorithms for group actions: homomorphism principle and orderly
generation applied to graphs

Thomas Grüner, Reinhard Laue, and Markus Meringer
Universität Bayreuth,

Lehrstuhl II für Mathematik
D-95440 Bayreuth

Abstract

The generation of discrete structures up to isomorphism is interesting as
well for theoretical as for practical purposes. Mathematicians want to look at
and analyse structures and for example chemical industry uses mathematical
generators of isomers for structure elucidation. The example chosen in this
paper for explaining general generation methods is a relatively far reaching
and fast graph generator which should serve as a basis for the next more
powerful version of MOLGEN, our generator of chemical isomers.

1 Introduction

Generally the problem of generating graphs has been considered by many authors. We
mention only a few approaches which are strongly related to our work. Mostly the
approaches use some kind of orderly generation of which we will present our subset
oriented version below. The basic ideas are from R. Read [17] and I. Faradzhev [4],
and an important step forward was made by L.A. Goldberg [5], where it was shown
that by generating graphs by adding vertices of maximal degree a polynomial delay can
be achieved. This was a successful attempt to use structure information in the orderly
generation approach. A different strategy had been chosen in the famous DENDRAL
project which was an early version of a generator of chemical isomers [13], [8]. There
for a ”planning step” the vertices of degree 1 and 2 are removed and cyclic components
are formed by removing bridges. Then an analysis of the given brutto formula gives
the possible number of cyclic components, the possible edge degree series for each cyclic
component, and the number of interconnections of these components. The isomers are
then built up to isomorphism from a catalogue of cyclic structures in a number of steps
using some computational group theory. Thus, a structural analysis of the problem
allowed to break down the problem into smaller pieces which could be handled easier.

The approach presented here makes use of both kinds of ideas. On one hand the
mathematical idea of homomorphism is exploited to use structure information algorith-
mically. This leads to a recursive construction of graphs from regular graphs, which
compared to DENDRAL allows an unbounded number of simplification steps. On the
other hand orderly generation is used in the remaining homomorphically irreducible
cases. The result is a generator which is extremely fast in many situations but which

1

which is slow compared to existing generators as for example NAUTY [14] or the present
MOLGEN generator [9] in smaller cases due to the mathematical overhead. A complex-
ity analysis still is missing and should evolve out of a study of the best recursion strategy
within the general framework presented.

2 Basic Principles

We start with some basic principles and then show how they are used in generating
graphs up to isomorphism. Generally the problem of generating objects up to isomor-
phism can be interpreted as the problem of finding orbit representatives from a group
action. Since algorithms mostly also need the stabilizers of the chosen representatives,
we understand by a solution of the orbit representative problem a determination of a
set of representatives together with their stabilizers.

We represent simple graphs as subsets from the set of all 2-element subsets of a
vertex set V. Then two such simple graphs are isomorphic iff they lie in the same orbit
of SV . Thus, we have to consider induced group actions. In such situations there is
often enough structure to apply algebraic decomposition techniques. The basis of this
approach is to make algorithmic use of homomorphisms.

2.1 Definition: Homomorphism of group actions
Let G1 be a group acting on a set Ω1 and G2 be a group acting on a set Ω2. A

pair σ = (σΩ, σG) of mappings where σΩ maps Ω1 into Ω2 and σg : G1 → G2 is a group
homomorphism is a homomorphism of group actions if σ is compatible with both actions,
i.e. for all g ∈ G1 and all ω ∈ Ω1

(ωg)σΩ = ωσΩgσG .

If both components of σ are surjective σ is an epimorphism, if both components are
bijective σ is an isomorphism.

If two group actions (Ω1, G), (Ω2, G) are isomorphic with an isomorphism σ then σ
carries orbit representatives and their stabilizers onto corresponding representatives and
stabilizers. Thus, if isomorphisms of group actions can be found whole sets of solutions
of the orbit problem can be used many times. This will be used to describe large sets of
solutions implicitely in our generator while still allowing an explicit listing on demand.

Suppose an epimorphism σ : (Ω1, G1) → (Ω2, G2) is given. Then we may use σ in
two ways. Firstly, if a solution of the orbit problem is known in (Ω2, G2) then we only
have to look at the preimage sets σ−1

Ω (ω2) for representatives ω2 and let the preimage
groups σ−1

G (NG2(ω2)) act on these sets respectively. We call this usage of σ a split.
Secondly, if a solution of the orbit problem is known in (Ω1, G1) then we may use the

homomorphic images of the representatives and their stabilizers to find a solution in the
image domain. There is only one complication that different orbits may be mapped onto
the same orbit. So, if the image ω2 = ωσΩ

1 of one representative ω1 is used one has to
avoid the other image representatives for the elements from ∆ = σ−1

Ω (ω2). It should be

2

noted that those points γ in ∆ that are mapped onto ω1 by some g(γ) ∈ G1 correspond
bijectively to the cosets of NG1(ω1) in the full preimage group of NG2(ω2). The elements
g(γ)−1 are just a set of coset representatives. Thus, one can also obtain the stabilizer of
ω2 in this way. We call this usage of σ a fusion.

To point out the importance of these two interpretations we shortly mention a typical
application in construction problems. Suppose a set of representatives for the isomor-
phism types of a certain class of graphs is given. Then an extension step adds new
subgraphs into each of these graphs. This step can be broken into two parts by the
homomorphism principle. In the first part the new subgraph is added as a coloured
object in all possible ways up to equivalence under the automorphism group of the old
graph. This is the split part of the extension. It is related to the simplification which
forgets the new added subgraph. In the next half of the extension step we forget the
special colour of the subgraph. This is a simplification σ where we use fusion.

For another simple example using some aspects of homomorphisms consider the gen-
eration of multigraphs. A multigraph may be obtained by gradually increasing the
highest edge multiplicity by 1. In each step only the automorphism group of the chosen
representative needs to be considered with its action on the set of mappings from the
set of all edges of maximal degree m to the set {m,m + 1}. This is of course a first
application of a split. It is well known that the percentage of simple graphs with non-
trivial automorphism group tends to 0 with increasing number of vertices. Thus, in most
cases we don’t have any group action at all in these steps (a recent implementation [1]
demonstrates that already for a small number of vertices the automorphism groups of
the multigraphs tend to become trivial very soon). Nevertheless the cases with nontrivial
group action have to be considered. So suppose a multigraph G has k egdes of high-
est multiplicity forming the egde set Ek. Then AutG acts on the set of mappings from
Ek to {m,m + 1}. The orbits correspond to the multigraphs with highest multiplicity
m + 1 which can be deduced from G. To solve this orbit problem we may map Ek onto
{1, · · · , k}, {m,m + 1} onto {0, 1}, and AutG onto some corresponding subgroup U of
Sk. This is an isomorphism of group actions which maps onto an orbit problem which is
independent of k. If we solve these orbit problems as in the case of simple graphs once
and for all we only have to note the relation of the solutions there to the desired ones.

One can break up this orbit problem even further by reducing the action of U from
{0, 1}{1,···,k} to {0, 1}B where B is an orbit of U on {1, · · · , k}. This may be repeated until
the stabilizer of a representative mapping is trivial or the mappings are fully determined.

As usual in algebra, simplifications by homomorphisms stop at some stage because
no non trivial homomorphisms exist any more. These situations are called irreducible
cases. For such cases we need another tool, i.e. orderly generation[17],[4]. We now
suppose that a group G acts on a finite set X. We impose on X an ordering < such
that also the set 2X of all subsets of X is lexicographically ordered. This ordering will
not be compatible with the action of G, in general. It is therefore quite astonishing that
it can be used in solving orbit problems. Each orbit SG for some S ∈ 2X contains a
lexicographically minimal element S0 which we denote as the canonical representative

3

with respect to <. In short we say S ∈ canon<(2X , G) iff S ≤ SG. Then we have the
following fundamental lemma[10].

2.2 Lemma If S ∈ canon<(2X , G), T ⊂ S, and T < S then also T ∈ canon<(2X , G).

Thus, we only have to enlarge representatives T of smaller cardinality by elements
x which are larger than each element in T to obtain candidates for representatives of
greater cardinality. This approach can be refined by noticing that there are some further
elements y larger than each element in T which can be excluded as x.

2.3 Lemma Let T = {x1, · · · , xt}, where x1 < x2 < · · · < xt. Then for y ∈
xNG({x1,···,xi}) for xi < x < xi+1 and i < t the set T ∪ {y} is not in canon<(2X , G).
If i = t then if y is not minimal in its orbit under NG(T) the set T ∪ {y} is not in
canon<(2X , G).

The candidates obtained after removing the cases of the preceding lemma are often
called semicanonical in the special case of graph generation [12],[7],[16].

A test for minimality for each remaining candidate S now has to decide whether there
exists some g ∈ G such that Sg < S. The obvious strategy is to run through G with g until
either Sg < S or all elements of G have been tested. Of course there must be chosen some
ordering in which the elements of G have to be considered. We take a Sims chain with
respect to the set X ordered ascendingly as a base B = (b1, · · · , bn). This chain consists
of transversals for the left cosets of Gi = CG({b1, · · · , bi}) in Gi−1 = CG({b1, · · · , bi−1})
for i = n, · · · , 1. We order these representatives r by br

i . Then we can run through all
rGi in this order of r′s and for fixed r in ascending order through Gi for i = n, · · · , 1.
There is a case where some elements of G need not be considered in this procedure [7].

2.4 Lemma Suppose S < SU for some subset U of G and Sg = S for some g ∈ G.
Then also S < SgU , since SgU = SU .

Thus, for a subgroup U which has already been tested the whole left coset gU can
be omitted if Sg = S is detected. Sometimes the elements of X play a different role in
a bigger context. Then one has the additional condition that each xg has to belong to
a certain class of elements of X which gives further restrictions for the choice of group
elements.

Often the required solutions have to fulfill some constraints. Then a check if these
constraints are fulfilled is usually much faster than a canonicity check and will be done
before. One may even hope that after several recursion steps with increasing t only few
candidates remain for a canonicity check. The corresponding generation strategy may
lead to a larger number of candidates, since in the intermediate steps no restriction to
extending canonical representatives only is made. Thus, if a candidate S is not minimal
in its orbit then already its predecessor may not have been minimal also. In the light of
lemma 2.4 above it is therefore useful to determine the first extension step where this non
canonicity could have been detected. Then all further extensions of this candidate must
also be rejected. Depending on the selectivity of the additional constraints a delicate
balance of steps with constraint checking only and steps with canonicity check combined

4

with tracing back to the earliest detection point is needed for the fastest strategy. This
has been followed up by MOLGEN [9].

Several different strategies for solving the isomer generation problem have been pur-
sued in the MOLGEN project. A first strategy followed the DENDRAL strategy [13].
There in a finite number of steps the isomers are constructed out of cyclic graphs. The
present version uses orderly generation in filling characteristic classes of rows of the ad-
jacency matrix of the graph representing an isomer [7]. For a future version we have
implemented a proposal from [8] as a preliminary step. This version is presently only
available for simple graphs[6]. The generation strategy of this version makes a more
sophisticated use of homomorphisms and combines them with the orderly generation
approach as discussed above, in the irreducible cases. This new strategy is explained in
the next section.

3 A graph generator

The generator relies on a strategy of determining first how all graphs with a given
degree partition can be built up recursively from regular graphs. The basic result for
this approach is the following.

3.1 Theorem Let a = (a0, a1, · · · , am) be a degree partition of a graph, i. e. there
exists a graph G having exactly ai vertices of degree i for all ai, and aj 6= 0. If G is any
graph with this degree partition then the aj vertices of degree j span a subgraph T and
the remaining vertices span a subgraph H, such that the degree partitions b = (b0, · · · , bj)
of T and c = (c0, · · · , cm) of H fulfill the following conditions.

For each l ∈ {1, · · · , m}, l 6= l there exists a partition

al =
∑

i+k=l

cik

such that for all i
ci =

∑

k

cik.

There exists a matrix I with |H| columns and |T | rows such that all entries are 0 or 1
and

∑
i cik rows of sum k and bj−l columns of sum l.

If on the other hand these conditions are fulfilled for degree partitions a, b, c then for
all subgraphs T with degree partition b and H with degree partition c there exists a graph
G with degree partition a, having T and H as subgraphs.

There are well known criteria for a degree partition to be the degree partition of a
graph [11]. Also, the existence condition for a 0/1-matrix with the required row and
column sums can be expressed numerically without any explicit construction by the
Gale-Ryser theorem[18, p.148,149]. Thus, one can decide in advance whether a splitting
of a given degree sequence a into two degree sequences of graphs b and c will allow
to construct from two corresponding subgraphs T and H a graph G with the required
degree sequence a.

5

It is also clear that the subgraphs T and H in such a case are uniquely determined in
any resulting graph G. Also the incidence structure I with a row for each vertex x ∈ H
and a column for each vertex y ∈ T and noting an egde connecting x to y by the entry
1 in the corresponding place of I is unique. Therefore we have the homomorphism σ
mapping G onto (T, H, I). Thus, we may first find all degree sequences b and c and
having constructed the corresponding subgraphs find the possible incidence structures
I to form the required graphs G.

The strategy obviously reduces the construction problem of simple graphs with pre-
scribed degree sequence to that of regular graphs and the problem of how to paste the
subgraphs T and H together. Regular graphs are constructed by an implementation[15]
of the method of G. Brinkmann [2]. This is the fastest method known to us presently.
The problem of pasting T and H together breaks into two main steps.

Suppose H has ci vertices of degree i and cik of them have just k neighbors in
T. Then we have to find all partitions of the set of the ci vertices into these subsets
of cik subsets for all k up to equivalence under the automorphism group of H. This
can be done by orderly generation or better by a combination of homomorphism steps
and orderly generation. It is important to notice that we will often find only a few
different isomorphism types of orbit problems in this step. Moreover, since very often
the automorphism group of H will be trivial or act trivially on this set of partitions,
the solutions of one case may be implicitely carried over to the isomorphic cases by
just noting which bijections must be applied. Also all subgraphs H with the same edge
degree sequence and trivial automorphism group can be considered as essential only one
case.

Now we know the number of entries 1 in each row and each column of I. We have
to find a set of representatives of the different ways to fill this matrix up to the action
of the two automorphism groups AutH and AutT. We can first partition I into blocks
where the corresponding vertices of each row and those of each column are in the same
orbit of the automorphism group of T or the stabilizer of the selected partition in the
automorphism group of H. Then we have to assign to these blocks a number of 1’s that
we want to distribute there. We end up with the problem of selecting from the set of
places in the block the subsets of those which should get an entry 1. This can be done
by orderly generation. By the homomorphism principle only the stabilizer of any such
solution has to be considered in its action on the next block to fill. We may even split
that block further into the orbits of that stabilizer. Thus, again the acting groups and
the blocks become smaller by some factor until no group action appears any more.

It should be clear that a lot of different choices can be made to follow up the general
rule of first simplifying by homomorphisms and then using orderly generation in the
irreducible cases. Our implementation allows to experiment at certain stages to find a
good strategy. In the most successful combination strategies we obtain by the implicit
handling of isomorphic cases run times of up to 1031 graphs per second on a PC, see the
small table below. We remark that we used a labeled branching datastructure and a
base change algorithm after [3] to deal with the various automorphism groups occuring

6

during the generation process.
Isomorphism types determined in 10 seconds

no. of vertices degree partition number of graphs
20 (0,1,8,7,1,1,0,1,0,0,1) 175729
30 (0,0,4,2,4,0,2,0,10,0,6,0,2) 2900585207520000000
50 (0,2,10,8,11,5,8,1,2,1,0,1,1) 192382967718269922890569744384

As in 3.1 the degree partitions give the numbers of vertices of the degrees 0, 1, · · · ,
12. Each computation was interrupted after 10.15 seconds and is therefore incomplete.
All computations were done on a PC 486DX2 with 8MB of memory.

Compared to generators using only orderly generation or only few reductions by
homomorphisms as the present MOLGEN system the new approach needs much more
time for small cases(up to 20 - 30 vertices). This is due to the overhead caused by
determining the different decompositions of the given degree partition. So the methods
will have to be chosen depending on the problem size. Still some optimization is needed
to make the new generator useful. The most important point seems to be that we need
powerful constraints and ways to exploit them as early as possible to reduce the solution
space. According to the recursion steps this means to transform selection criteria for the
result graphs to criteria applicable to the subgraphs which have to be combined in the
recursion step. So one will have to study which properties are hereditary to the regular
subgraphs which are the atoms in this approach.

References

[1] J. Biegholdt: Computerunterstützte Berechnung von Multigraphen mittels Homo-
morphieprinzip. Diplomarbeit Universität Bayreuth, may 28, 1995.

[2] G. Brinkmann: Generating cubic graphs faster than isomorphism checking,
preprint.

[3] C.A. Brown, C. Finkelstein, P.W. Purdom: A new basechange algorithm for per-
mutation groups. SIAM J. Computing 18(1989), 1037-1047.

[4] I.A. Faradzhev: Generation of nonisomorphic graphs with a given degree sequence
(russian). In Algorithmic Studies in Combinatorics, Ed. Nauka, Moscow(1978), 11-
19.

[5] L.A. Goldberg: Efficient algorithms for listing unlabeled graphs. J. Algorithms
13(1992), 128-143.

[6] Th. Grüner: Ein neuer Algorithmus zur rekursiven Erzeugung von Graphen.
Diplomarbeit Universität Bayreuth, in preparation.

[7] R. Grund: Konstruktion molekularer Graphen mit gegebenen Hybridisierungen und
überlappungsfreien Fragmenten. Bayreuther Math. Schr. 49(1995), 1-113.

7

[8] R. Grund, A. Kerber, R. Laue: Construction of discrete structures, especially of
chemical isomers. to appear in Discrete Applied Mathematics.

[9] R. Grund, A. Kerber, R. Laue: MOLGEN, ein Computeralgebra-System für
die Konstruktion molekularer Graphen. Communications in mathematical chem-
istry(Match)27(1992), 87-131.

[10] R. Hager, A. Kerber, R. Laue, D. Moser, W. Weber: Construction of orbit repre-
sentatives. Bayreuther Math. Schr. 35(1991), 157-169.

[11] S.L. Hakimi: On realizability of a set of integers as degrees of the vertices of a linear
graph I. SIAM J. Appl. Math. 10(1962), 496-506.

[12] V. Kvasnicka, J. Pospichal: Canonical indexing and the constructive enumeration
of molecular graphs. J. Chem. Computer Science 30(1990), 99-105.

[13] R.K. Lindsay, B.G. Buchanan, E.A. Feigenbaum, J. Lederberg: Applications of
artificial intelligence for organic chemistry: The Dendral Project. McGraw-Hill,
New York(1980).

[14] B.D. McKay: Practical graph isomorphism. Congressus Numerantium 30(1981),
45-87.

[15] M. Meringer: Erzeugung regulärer Graphen. Diplomarbeit Universität Bayreuth,
in preparation.

[16] S.G. Molodtsov: Computer-Aided generation of molecular graphs. preprint.

[17] R.C. Read: Every one a winner. Annals of Discrete Math. 2(1978), 107-120.

[18] J.H. van Lint, R.M. Wilson: A course in combinatorics. Cambridge University Press,
1992.

8

