Address of the authorTopRandom generation of block codesReferences

References

 [1]
C.J. Colbourn and R.C. Read. Orderly algorithms for generating restricted classes of graphs. Journal of Graph Theory, 3:187 - 195, 1979.
 [2]
J.D. Dixon and H.S. Wilf. The random selection of unlabeled graphs. Journal of Algorithms, 4:205 - 213, 1983.
 [3]
H. Fripertinger. Enumeration of isometry classes of linear (n,k)-codes over GF(q) in SYMMETRICA. Bayreuther Mathematische Schriften, 49:215 - 223, 1995. ISSN 0172-1062.
 [4]
H. Fripertinger. Zyklenzeiger linearer Gruppen und Abzählung linearer Codes. Séminaire Lotharingien de Combinatoire, Actes 33:1 - 10, 1995. ISSN 0755-3390.
 [5]
H. Fripertinger. Enumeration of Linear Codes by Applying Methods from Algebraic Combinatorics. Grazer Math. Berichte, 328:31 - 42, 1996.
 [6]
H. Fripertinger and A. Kerber. Isometry Classes of Indecomposable Linear Codes. In G. Cohen, M. Giusti, and T. Mora, editors, Applied Algebra, Algebraic Algorithms and Error-Correcting Codes, 11th International Symposium, AAECC-11, Paris, France, July 1995, volume 948 of Lecture Notes in Computer Science, pages 194-204. Springer, 1995.
 [7]
R. Grund. Symmetrieklassen von Abbildungen und die Konstruktion von diskreten Strukturen. Bayreuther Mathematische Schriften, 31:19 - 54, 1990. ISSN 0172-1062.
 [8]
M.A. Harrison. Counting Theorems and their Applications to Switching Theory. In A. Mukhopadyay, editor, Recent Developments in Switching Functions, chapter 4, pages 85 - 120. Academic Press, 1971.
 [9]
M.A. Harrison and R.G. High. On the Cycle Index of a Product of Permutation Groups. Journal of Combinatorial Theory, 4:277 - 299, 1968.
 [10]
A. Kerber. Anwendungsorientierte Theorie endlicher Strukturen. To be published.
 [11]
A. Kerber. Der Zykelindex der Exponentialgruppe. Mitteilungen aus dem Mathematischen Seminar Giessen, 98:5 - 20, 1973.
 [12]
A. Kerber. Algebraic Combinatorics via Finite Group Actions. B.I. Wissenschaftsverlag, Mannheim, Wien, Zürich, 1991. ISBN 3-411-14521-8.
 [13]
A. Kerber. Algebraic Combinatorics in Bayreuth. Séminaire Lotharingien de Combinatoire, B34j, 1995. http://cartan.u-strasbg.fr/ slc//divers/../wpapers/s34bayreuth.html.
 [14]
H. Lehmann. Das Abzähltheorem der Exponentialgruppe in gewichteter Form. Mitteilungen aus dem Mathem. Seminar Giessen, 112:19 - 33, 1974.
 [15]
H. Lehmann. Ein vereinheitlichender Ansatz für die REDFIELD - PÓLYA - de BRUIJNSCHE Abzähltheorie. PhD thesis, Universität Giessen, 1976.
 [16]
E.M. Palmer and R.W. Robinson. Enumeration under two representations of the wreath product. Acta Mathematica, 131:123 - 143, 1973.
 [17]
E.M. Palmer and Robinson R.W. The matrix group of two permutation groups. Bull. Amer. Math. Soc., 73:204 - 207, 1967.
 [18]
G. Pólya. Kombinatorische Anzahlbestimmungen für Gruppen, Graphen und chemische Verbindungen. Acta Mathematica, 68:145 - 254, 1937.
 [19]
R.C. Read. Every one a winner. Ann. Discrete Mathematics, 2:107 - 120, 1978.
 [20]
C.C. Sims. Computational methods in the study of permutation groups. Computational Problems in Abstract Algebra, pages 169 - 183, 1970.
 [21]
D. Slepian. On the Number of Symmetry Types of Boolean Functions of n Variables. Canad. J. Math., 5:185 - 193, 1953.
 [22]
SYMMETRICA. A program system devoted to representation theory, invariant theory and combinatorics of finite symmetric groups and related classes of groups. Copyright by "Lehrstuhl II für Mathematik, Universität Bayreuth, 95440 Bayreuth". Distributed via anonymous ftp 132.180.16.20 in dist/SYM.tar.Z.

harald.fripertinger@kfunigraz.ac.at,
last changed: January 23, 2001

Address of the authorTopRandom generation of block codesReferences