Tnk2: Number of the isometry classes of all binary (n,r)-codes for 1 <= r <= k without zero-columns |
n\k | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
2 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
3 | 1 | 3 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 | 4 |
4 | 1 | 4 | 7 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 | 8 |
5 | 1 | 5 | 11 | 15 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 | 16 |
6 | 1 | 7 | 19 | 30 | 35 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 | 36 |
7 | 1 | 8 | 29 | 56 | 73 | 79 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 | 80 |
8 | 1 | 10 | 44 | 107 | 161 | 186 | 193 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 | 194 |
9 | 1 | 12 | 66 | 200 | 363 | 462 | 497 | 505 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 | 506 |
10 | 1 | 14 | 96 | 372 | 837 | 1222 | 1392 | 1439 | 1448 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 | 1449 |
11 | 1 | 16 | 136 | 680 | 1963 | 3435 | 4282 | 4559 | 4620 | 4630 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 | 4631 |
12 | 1 | 19 | 193 | 1241 | 4721 | 10397 | 14805 | 16580 | 17016 | 17094 | 17105 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 | 17106 |
13 | 1 | 21 | 265 | 2221 | 11477 | 33578 | 57875 | 70491 | 74048 | 74710 | 74807 | 74819 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 | 74820 |
14 | 1 | 24 | 361 | 3938 | 28220 | 115624 | 258894 | 361339 | 396281 | 403171 | 404150 | 404269 | 404282 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 | 404283 |
15 | 1 | 27 | 485 | 6880 | 69692 | 419789 | 1321280 | 2278637 | 2706897 | 2801074 | 2814022 | 2815436 | 2815580 | 2815594 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 | 2815595 |
16 | 1 | 30 | 643 | 11860 | 171966 | 1585217 | 7.570495 | 17.745061 | 24.337599 | 26.116298 | 26.364186 | 26.387893 | 26.389894 | 26.390066 | 26.390081 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 | 26.390082 |
17 | 1 | 33 | 841 | 20148 | 421972 | 6.130130 | 47.305333 | 166.540680 | 289.965315 | 336.319805 | 343.646556 | 344.285051 | 344.327452 | 344.330232 | 344.330435 | 344.330451 | 344.330452 | 344.330452 | 344.330452 | 344.330452 | 344.330452 | 344.330452 | 344.330452 | 344.330452 | 344.330452 |
18 | 1 | 37 | 1093 | 33778 | 1025811 | 23.928972 | 311.742256 | 1794.040168 | 4441.066380 | 6005.613724 | 6334.073340 | 6363.901428 | 6365.512649 | 6365.586927 | 6365.590731 | 6365.590969 | 6365.590986 | 6365.590987 | 6365.590987 | 6365.590987 | 6365.590987 | 6365.590987 | 6365.590987 | 6365.590987 | 6365.590987 |
19 | 1 | 40 | 1401 | 55814 | 2462143 | 93.161541 | 2103.025726 | 20987.476447 | 82142.254402 | 144461.760657 | 164622.945438 | 166938.366078 | 167057.901531 | 167061.886396 | 167062.014031 | 167062.019160 | 167062.019436 | 167062.019454 | 167062.019455 | 167062.019455 | 167062.019455 | 167062.019455 | 167062.019455 | 167062.019455 | 167062.019455 |
20 | 1 | 44 | 1782 | 91007 | 5.821962 | 358.570997 | 14206.632939 | 254684.454328 | 1.707902.151463 | 4.410619.091439 | 5.907271.844108 | 6.165900.986093 | 6.181973.769277 | 6.182443.647436 | 6.182453.308843 | 6.182453.524342 | 6.182453.531170 | 6.182453.531488 | 6.182453.531507 | 6.182453.531508 | 6.182453.531508 | 6.182453.531508 | 6.182453.531508 | 6.182453.531508 | 6.182453.531508 |
21 | 1 | 48 | 2248 | 146392 | 13.540152 | 1356.178991 | 94726.167427 | 3.107605.995993 | 37.600720.702701 | 158.540306.553453 | 280.729391.647046 | 316.478681.285034 | 319.736342.193643 | 319.845432.216228 | 319.847239.002271 | 319.847261.968213 | 319.847262.326118 | 319.847262.335103 | 319.847262.335467 | 319.847262.335487 | 319.847262.335488 | 319.847262.335488 | 319.847262.335488 | 319.847262.335488 | 319.847262.335488 |
22 | 1 | 52 | 2811 | 232458 | 30.942230 | 5021.267644 | 618051.904983 | 37.418101.305011 | 841.501320.155068 | 6251.420890.826653 | 16593.022336.718193 | 22090.637877.776663 | 22927.457506.436142 | 22967.421846.756343 | 22968.142624.777428 | 22968.149408.495125 | 22968.149462.026695 | 22968.149462.612047 | 22968.149462.623744 | 22968.149462.624158 | 22968.149462.624179 | 22968.149462.624180 | 22968.149462.624180 | 22968.149462.624180 | 22968.149462.624180 |
23 | 1 | 56 | 3487 | 364462 | 69.443492 | 18160.079508 | 3.927156.178649 | 439.995775.004885 | 18681.874482.499450 | 256404.023517.296048 | 1.133708.193551.906989 | 2.015944.045461.737885 | 2.258359.726818.742896 | 2.277401.625105.496912 | 2.277877.045034.006010 | 2.277881.669817.800822 | 2.277881.694661.444763 | 2.277881.694783.825716 | 2.277881.694784.769284 | 2.277881.694784.784361 | 2.277881.694784.784829 | 2.277881.694784.784851 | 2.277881.694784.784852 | 2.277881.694784.784852 | 2.277881.694784.784852 |
24 | 1 | 61 | 4301 | 564560 | 153.038397 | 64086.748267 | 24.243834.619157 | 5025.781692.126252 | 405931.192946.997422 | 10.572897.056655.024033 | 83.806992.795597.973727 | 226.289469.878102.289357 | 300.168079.319920.273349 | 310.559218.986277.810406 | 310.978730.227200.609356 | 310.984203.275990.526408 | 310.984232.062431.556094 | 310.984232.151139.830875 | 310.984232.151414.324690 | 310.984232.151415.825086 | 310.984232.151415.844348 | 310.984232.151415.844875 | 310.984232.151415.844898 | 310.984232.151415.844899 | 310.984232.151415.844899 |
25 | 1 | 65 | 5263 | 864230 | 331.208859 | 220608.700157 | 145.277300.343585 | 55627.454599.068011 | 8.573731.168352.587920 | 429.852229.059302.269636 | 6387.295315.807525.889647 | 29090.805184.251551.147318 | 51863.563434.039137.770925 | 57884.718164.365471.348317 | 58315.986896.511523.695920 | 58324.919509.928342.507684 | 58324.980440.974683.278272 | 58324.980614.753882.241516 | 58324.980615.062715.533758 | 58324.980615.063319.811943 | 58324.980615.063322.167066 | 58324.980615.063322.191466 | 58324.980615.063322.192056 | 58324.980615.063322.192080 | 58324.980615.063322.192081 |
Tnk2: Number of the isometry classes of all binary (n,r)-codes for 1 <= r <= k without zero-columns |