Tnk3: Number of the isometry classes of all projective ternary (n,r)-codes for 1 <= r <= k (without zero-columns) Tables for ternary codes Rnk3: Number of the isometry classes of all ternary indecomposable (n,k)-codes without zero-columns Wnk3: Number of the isometry classes of all ternary (n,k)-codes

Wnk3: Number of the isometry classes of all ternary (n,k)-codes

n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 3 3 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 4 7 4 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 5 12 12 5 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 6 20 31 20 6 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7 7 30 70 70 30 7 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
8 8 44 148 238 148 44 8 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
9 9 61 299 776 776 299 61 9 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 10 83 579 2565 4535 2565 579 83 10 1 0 0 0 0 0 0 0 0 0 0 0 0 0
11 11 109 1085 8546 30666 30666 8546 1085 109 11 1 0 0 0 0 0 0 0 0 0 0 0 0
12 12 142 1989 29048 238711 530903 238711 29048 1989 142 12 1 0 0 0 0 0 0 0 0 0 0 0
13 13 180 3560 99488 2026860 11.695903 11.695903 2026860 99488 3560 180 13 1 0 0 0 0 0 0 0 0 0 0
14 14 226 6247 340740 17.701911 281.654954 746.506080 281.654954 17.701911 340740 6247 226 14 1 0 0 0 0 0 0 0 0 0
15 15 279 10767 1153121 152.790217 6791.272336 50852.855630 50852.855630 6791.272336 152.790217 1153121 10767 279 15 1 0 0 0 0 0 0 0 0
16 16 342 18241 3.827577 1276.727850 158198.387835 3.416418.720159 9.729768.854521 3.416418.720159 158198.387835 1276.727850 3.827577 18241 342 16 1 0 0 0 0 0 0 0
17 17 413 30397 12.389593 10238.102095 3.516637.432522 220.359352.237584 1834.561542.606704 1834.561542.606704 220.359352.237584 3.516637.432522 10238.102095 12.389593 30397 413 17 1 0 0 0 0 0 0
18 18 496 49888 39.002124 78571.175527 74.369795.606315 13535.440437.249399 332526.221657.314318 975987.015316.674430 332526.221657.314318 13535.440437.249399 74.369795.606315 78571.175527 39.002124 49888 496 18 1 0 0 0 0 0
19 19 589 80651 119.236047 577091.052409 1496.861049.203062 790661.028341.585060 57.499563.952271.820281 500.951652.725728.177629 500.951652.725728.177629 57.499563.952271.820281 790661.028341.585060 1496.861049.203062 577091.052409 119.236047 80651 589 19 1 0 0 0 0
20 20 696 128537 353.973047 4.061653.798611 28720.604755.256408 43.966782.988162.043931 9472.543818.380522.736936 245977.793138.342842.656889 731312.476446.489920.312358 245977.793138.342842.656889 9472.543818.380522.736936 43.966782.988162.043931 28720.604755.256408 4.061653.798611 353.973047 128537 696 20 1 0 0 0
21 21 815 202067 1020.883123 27.439948.650145 526389.756354.045785 2331.627991.893318.831493 1.488106.535996.676385.030587 115.338086.188239.813210.301747 1024.379603.039976.803429.191334 1024.379603.039976.803429.191334 115.338086.188239.813210.301747 1.488106.535996.676385.030587 2331.627991.893318.831493 526389.756354.045785 27.439948.650145 1020.883123 202067 815 21 1 0 0
22 22 950 313501 2862.963338 178.273604.338338 9.234542.360061.356691 118156.966305.019484.388704 223.300913.448310.284411.424300 51678.562247.701263.633160.466758 1.373511.084934.946202.262973.780450 4.105571.013006.146472.067365.965527 1.373511.084934.946202.262973.780450 51678.562247.701263.633160.466758 223.300913.448310.284411.424300 118156.966305.019484.388704 9.234542.360061.356691 178.273604.338338 2862.963338 313501 950 22 1 0
23 23 1099 480269 7815.385011 1115.853567.308325 155.372149.896015.832966 5.732908.557425.425422.043076 32065.226611.957733.504795.697025 22.158664.678600.502303.579186.882215 1763.430850.755175.794369.754924.237443 15786.954597.682999.456331.364804.588813 15786.954597.682999.456331.364804.588813 1763.430850.755175.794369.754924.237443 22.158664.678600.502303.579186.882215 32065.226611.957733.504795.697025 5.732908.557425.425422.043076 155.372149.896015.832966 1115.853567.308325 7815.385011 480269 1099 23 1

harald.fripertinger "at" uni-graz.at, May 10, 2016

Tnk3: Number of the isometry classes of all projective ternary (n,r)-codes for 1 <= r <= k (without zero-columns) Tables for ternary codes Rnk3: Number of the isometry classes of all ternary indecomposable (n,k)-codes without zero-columns Uni-Graz Mathematik UNIGRAZ online Wnk3: Number of the isometry classes of all ternary (n,k)-codes Valid HTML 4.0 Transitional Valid CSS!