Anton Betten, Evi Haberberger, Reinhard Laue, Alfred Wassermann
Mathematical department, University of Bayreuth
This report is generated from the file KM_TetraTetraedgemidpointsxTetradualxaddcenter_t2_k3.txt . This file is 5767 bytes long.
creation date: Fri Jun 11 14:55:27 MEST 1999
the group TetraTetraedgemidpointsxTetradualxaddcenter of order 12 is generated by the following permutations:
(1 2 3)(5 6 7)(8 9 10)(11 12 13)
(1 2 4)(5 9 8)(6 10 7)(11 12 14)
jump to the Kramer Mesner matrix M 2,3
jump to solution vectors
| i | # of orbits | index of first orbit | jump |
|---|---|---|---|
| 0 | 1 | 0 | jump to orbits / KM-matrix M0,1 |
| 1 | 4 | 1 | jump to orbits / KM-matrix M1,2 |
| 2 | 13 | 5 | jump to orbits / KM-matrix M2,3 |
| 3 | 46 | 18 | jump to orbits |
| # | representative | order of the set-stabilizer |
|---|---|---|
| 1 (1) | {} | 12 |
| # | representative | order of the set-stabilizer |
|---|---|---|
| 1 (2) | {15} | 12 |
| 2 (3) | {1} | 3 |
| 3 (4) | {5} | 2 |
| 4 (5) | {11} | 3 |
| # | representative | order of the set-stabilizer |
|---|---|---|
| 1 (6) | {11, 15} | 3 |
| 2 (7) | {1, 15} | 3 |
| 3 (8) | {5, 15} | 2 |
| 4 (9) | {1, 2} | 2 |
| 5 (10) | {1, 5} | 1 |
| 6 (11) | {1, 6} | 1 |
| 7 (12) | {1, 11} | 3 |
| 8 (13) | {1, 12} | 1 |
| 9 (14) | {5, 6} | 1 |
| 10 (15) | {5, 10} | 4 |
| 11 (16) | {5, 11} | 1 |
| 12 (17) | {5, 13} | 1 |
| 13 (18) | {11, 12} | 2 |
| # | representative | order of the set-stabilizer |
|---|---|---|
| 1 (19) | {11, 12, 15} | 2 |
| 2 (20) | {1, 12, 15} | 1 |
| 3 (21) | {1, 11, 15} | 3 |
| 4 (22) | {5, 13, 15} | 1 |
| 5 (23) | {5, 11, 15} | 1 |
| 6 (24) | {1, 2, 15} | 2 |
| 7 (25) | {1, 5, 15} | 1 |
| 8 (26) | {1, 6, 15} | 1 |
| 9 (27) | {5, 6, 15} | 1 |
| 10 (28) | {5, 10, 15} | 4 |
| 11 (29) | {1, 2, 3} | 3 |
| 12 (30) | {1, 2, 5} | 2 |
| 13 (31) | {1, 2, 6} | 1 |
| 14 (32) | {1, 2, 7} | 1 |
| 15 (33) | {1, 2, 10} | 2 |
| 16 (34) | {1, 2, 11} | 1 |
| 17 (35) | {1, 2, 13} | 1 |
| 18 (36) | {1, 5, 6} | 1 |
| 19 (37) | {1, 5, 7} | 1 |
| 20 (38) | {1, 5, 9} | 1 |
| 21 (39) | {1, 5, 10} | 1 |
| 22 (40) | {1, 5, 11} | 1 |
| 23 (41) | {1, 5, 12} | 1 |
| 24 (42) | {1, 5, 13} | 1 |
| 25 (43) | {1, 5, 14} | 1 |
| 26 (44) | {1, 6, 9} | 1 |
| 27 (45) | {1, 6, 11} | 1 |
| 28 (46) | {1, 6, 12} | 1 |
| 29 (47) | {1, 6, 13} | 1 |
| 30 (48) | {1, 6, 14} | 1 |
| 31 (49) | {1, 11, 12} | 1 |
| 32 (50) | {1, 12, 13} | 1 |
| 33 (51) | {5, 6, 7} | 3 |
| 34 (52) | {5, 6, 8} | 2 |
| 35 (53) | {5, 6, 9} | 3 |
| 36 (54) | {5, 6, 10} | 2 |
| 37 (55) | {5, 6, 11} | 1 |
| 38 (56) | {5, 6, 12} | 1 |
| 39 (57) | {5, 6, 13} | 1 |
| 40 (58) | {5, 6, 14} | 1 |
| 41 (59) | {5, 10, 11} | 1 |
| 42 (60) | {5, 11, 12} | 2 |
| 43 (61) | {5, 11, 13} | 1 |
| 44 (62) | {5, 11, 14} | 1 |
| 45 (63) | {5, 13, 14} | 2 |
| 46 (64) | {11, 12, 13} | 3 |
((1:4:6:4) )
((4:4:6:0:0:0:0:0:0:0:0:0:0) (0:1:0:3:3:3:1:3:0:0:0:0:0) (0:0:1:0:2:2:0:0:4:1:2:2:0) (1:0:0:0:0:0:1:3:0:0:3:3:3) )
((3:3:1:3:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:3:1:0:0:3:3:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:0:2:2:0:2:2:4:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:0:0:0:1:0:0:0:0:2:1:2:2:1:2:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:0:0:0:0:1:0:0:0:0:1:1:1:0:0:0:1:2:1:1:1:1:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:0:0:0:0:0:1:0:0:0:0:1:1:1:0:0:1:0:1:1:0:0:0:0:2:1:1:1:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:3:0:0:0:0:0:3:0:0:0:0:3:0:0:0:3:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:1:2:0:0:0:0:0:1:1:1:0:0:1:1:1:1:2:0:0:0:0:0:0:0:0:0:0:0:0:0:0) (0:0:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:1:1:1:0:0:0:0:0:1:0:0:0:0:0:0:1:1:1:1:1:1:1:1:0:0:0:0:0:0) (0:0:0:0:0:0:0:0:0:1:0:0:0:0:0:0:0:0:0:0:4:0:0:0:0:0:0:0:0:0:0:0:0:2:0:2:0:0:0:0:4:0:0:0:0:0) (0:0:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:1:1:0:0:0:0:1:1:0:0:0:0:0:0:0:1:2:1:0:1:1:1:1:0:0) (0:0:0:1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:1:1:0:1:0:0:1:0:0:0:0:0:0:1:0:1:2:1:0:1:1:1:0) (1:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:0:2:2:0:0:0:0:0:0:0:0:0:1:2:2:1:2) )
0010000001010000000000000000100000100000000010
0010000001010000000000000001000000100000000010
0010000001010000000000000000100010000000000010
0010000001010000000000000001000010000000000010
0010000001000010000000100000000000100000000010
0010000001000010000000100000000010000000000010
0010000001000010000000001000000000100000010000
0010000001000010000000010000000000100000010000
0010000001000010000000001000000010000000010000
0010000001000010000000010000000010000000010000
0010000001010000000000000000010000100000010000
0010000001010000000000000000010010000000010000