design clan: 9_36_12
9-(36,12,m*15), 1 <= m <= 97; (46/239) lambda_max=2925, lambda_max_half=1462
the clan contains 46 families:
- family 0, lambda = 15 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 1, lambda = 30 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 2, lambda = 105 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,105)
-
6-(34,10,735) (#12691) 6-(33,10,630)
6-(33,9,105) (#12431)
-
5-(34,10,4263) (#12692) 5-(33,10,3528) (#12693) 5-(32,10,2898)
5-(33,9,735) (#12432) 5-(32,9,630) (#12433)
5-(32,8,105) (#8213)
- family 3, lambda = 120 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5
- family 4, lambda = 165 containing 4 designs:
minpath=(0, 3, 0) minimal_t=5
- family 5, lambda = 210 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 6, lambda = 240 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,240)
-
6-(34,10,1680) (#12696) 6-(33,10,1440)
6-(33,9,240) (#12545)
-
5-(34,10,9744) (#12697) 5-(33,10,8064) (#12698) 5-(32,10,6624)
5-(33,9,1680) (#12546) 5-(32,9,1440) (#12547)
5-(32,8,240) (#8235)
- family 7, lambda = 255 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 8, lambda = 285 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,285)
-
6-(34,10,1995) (#12701) 6-(33,10,1710)
6-(33,9,285) (#12551)
-
5-(34,10,11571) (#12702) 5-(33,10,9576) (#12703) 5-(32,10,7866)
5-(33,9,1995) (#12552) 5-(32,9,1710) (#12553)
5-(32,8,285) (#8245)
- family 9, lambda = 330 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 10, lambda = 345 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,345)
-
6-(34,10,2415) (#12714) 6-(33,10,2070)
6-(33,9,345) (#12565)
-
5-(34,10,14007) (#12715) 5-(33,10,11592) (#12716) 5-(32,10,9522)
5-(33,9,2415) (#12566) 5-(32,9,2070) (#12567)
5-(32,8,345) (#8258)
- family 11, lambda = 420 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,420)
-
6-(34,10,2940) (#12729) 6-(33,10,2520)
6-(33,9,420) (#12583)
-
5-(34,10,17052) (#12730) 5-(33,10,14112) (#12731) 5-(32,10,11592)
5-(33,9,2940) (#12584) 5-(32,9,2520) (#12585)
5-(32,8,420) (#8274)
- family 12, lambda = 435 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 13, lambda = 465 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,465)
-
6-(34,10,3255) (#12734) 6-(33,10,2790)
6-(33,9,465) (#12589)
-
5-(34,10,18879) (#12735) 5-(33,10,15624) (#12736) 5-(32,10,12834)
5-(33,9,3255) (#12590) 5-(32,9,2790) (#12591)
5-(32,8,465) (#8284)
- family 14, lambda = 480 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,480)
-
6-(34,10,3360) (#12739) 6-(33,10,2880)
6-(33,9,480) (#12595)
-
5-(34,10,19488) (#12740) 5-(33,10,16128) (#12741) 5-(32,10,13248)
5-(33,9,3360) (#12596) 5-(32,9,2880) (#12597)
5-(32,8,480) (#8287)
- family 15, lambda = 555 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 16, lambda = 570 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 17, lambda = 615 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 18, lambda = 645 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,645) (#16353)
-
6-(34,10,4515) (#12757) 6-(33,10,3870) (#16354)
6-(33,9,645) (#12618)
-
5-(34,10,26187) (#12758) 5-(33,10,21672) (#12759) 5-(32,10,17802) (#16358)
5-(33,9,4515) (#12619) 5-(32,9,3870) (#12620)
5-(32,8,645) (#8322)
- family 19, lambda = 660 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,660) (#16360)
-
6-(34,10,4620) (#12762) 6-(33,10,3960) (#16361)
6-(33,9,660) (#12624)
-
5-(34,10,26796) (#12763) 5-(33,10,22176) (#12764) 5-(32,10,18216) (#16365)
5-(33,9,4620) (#12625) 5-(32,9,3960) (#12626)
5-(32,8,660) (#8327)
- family 20, lambda = 690 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 21, lambda = 705 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,705) (#16367)
-
6-(34,10,4935) (#12767) 6-(33,10,4230) (#16368)
6-(33,9,705) (#12630)
-
5-(34,10,28623) (#12768) 5-(33,10,23688) (#12769) 5-(32,10,19458) (#16372)
5-(33,9,4935) (#12631) 5-(32,9,4230) (#12632)
5-(32,8,705) (#8338)
- family 22, lambda = 735 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,735) (#16380)
-
6-(34,10,5145) (#12777) 6-(33,10,4410) (#16382)
6-(33,9,735) (#16381)
-
5-(34,10,29841) (#12778) 5-(33,10,24696) (#12780) 5-(32,10,20286) (#16389)
5-(33,9,5145) (#12779) 5-(32,9,4410) (#16386)
5-(32,8,735) (#8344)
- family 23, lambda = 795 containing 5 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,795)
-
6-(34,10,5565) (#12803) 6-(33,10,4770)
6-(33,9,795)
-
5-(34,10,32277) (#12804) 5-(33,10,26712) (#12806) 5-(32,10,21942)
5-(33,9,5565) (#12805) 5-(32,9,4770)
5-(32,8,795) (#8357)
- family 24, lambda = 840 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,840) (#16411)
-
6-(34,10,5880) (#12817) 6-(33,10,5040) (#16412)
6-(33,9,840) (#12661)
-
5-(34,10,34104) (#12818) 5-(33,10,28224) (#12819) 5-(32,10,23184) (#16416)
5-(33,9,5880) (#12662) 5-(32,9,5040) (#12663)
5-(32,8,840) (#8368)
- family 25, lambda = 870 containing 7 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,870)
-
6-(34,10,6090) 6-(33,10,5220) (#12397)
6-(33,9,870)
-
5-(34,10,35322) (#12405) 5-(33,10,29232) (#12398) 5-(32,10,24012) (#12400)
5-(33,9,6090) (#12404) 5-(32,9,5220) (#12399)
5-(32,8,870) (#8374)
- family 26, lambda = 885 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,885) (#16418)
-
6-(34,10,6195) (#16419) 6-(33,10,5310) (#16420)
6-(33,9,885) (#12667)
-
5-(34,10,35931) (#16424) 5-(33,10,29736) (#16425) 5-(32,10,24426) (#16428)
5-(33,9,6195) (#12668) 5-(32,9,5310) (#12669)
5-(32,8,885) (#8378)
- family 27, lambda = 915 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 28, lambda = 930 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 29, lambda = 960 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,960) (#16441)
-
6-(34,10,6720) (#16442) 6-(33,10,5760) (#16443)
6-(33,9,960) (#12685)
-
5-(34,10,38976) (#16447) 5-(33,10,32256) (#16448) 5-(32,10,26496) (#16451)
5-(33,9,6720) (#12686) 5-(32,9,5760) (#12687)
5-(32,8,960) (#8394)
- family 30, lambda = 1005 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1005) (#16453)
-
6-(34,10,7035) (#16454) 6-(33,10,6030) (#16455)
6-(33,9,1005) (#12419)
-
5-(34,10,40803) (#16459) 5-(33,10,33768) (#16460) 5-(32,10,27738) (#16463)
5-(33,9,7035) (#12420) 5-(32,9,6030) (#12421)
5-(32,8,1005) (#8404)
- family 31, lambda = 1020 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1020) (#16465)
-
6-(34,10,7140) (#16466) 6-(33,10,6120) (#16467)
6-(33,9,1020) (#12425)
-
5-(34,10,41412) (#16471) 5-(33,10,34272) (#16472) 5-(32,10,28152) (#16475)
5-(33,9,7140) (#12426) 5-(32,9,6120) (#12427)
5-(32,8,1020) (#8407)
- family 32, lambda = 1065 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1065) (#16477)
-
6-(34,10,7455) (#16478) 6-(33,10,6390) (#16480)
6-(33,9,1065) (#16479)
-
5-(34,10,43239) (#16484) 5-(33,10,35784) (#16486) 5-(32,10,29394) (#16493)
5-(33,9,7455) (#16485) 5-(32,9,6390) (#16490)
5-(32,8,1065) (#8417)
- family 33, lambda = 1095 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 34, lambda = 1110 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 35, lambda = 1140 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1140) (#16517)
-
6-(34,10,7980) (#16518) 6-(33,10,6840) (#16519)
6-(33,9,1140) (#12450)
-
5-(34,10,46284) (#16523) 5-(33,10,38304) (#16524) 5-(32,10,31464) (#16527)
5-(33,9,7980) (#12451) 5-(32,9,6840) (#12452)
5-(32,8,1140) (#8433)
- family 36, lambda = 1155 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 37, lambda = 1185 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1185) (#16529)
-
6-(34,10,8295) (#16530) 6-(33,10,7110) (#16531)
6-(33,9,1185) (#12456)
-
5-(34,10,48111) (#16535) 5-(33,10,39816) (#16536) 5-(32,10,32706) (#16539)
5-(33,9,8295) (#12457) 5-(32,9,7110) (#12458)
5-(32,8,1185) (#8443)
- family 38, lambda = 1230 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 39, lambda = 1245 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1245) (#16541)
-
6-(34,10,8715) (#16542) 6-(33,10,7470) (#16543)
6-(33,9,1245) (#12475)
-
5-(34,10,50547) (#16547) 5-(33,10,41832) (#16548) 5-(32,10,34362) (#16551)
5-(33,9,8715) (#12476) 5-(32,9,7470) (#12477)
5-(32,8,1245) (#8456)
- family 40, lambda = 1290 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 41, lambda = 1320 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1320) (#16565)
-
6-(34,10,9240) (#16566) 6-(33,10,7920) (#16567)
6-(33,9,1320) (#12493)
-
5-(34,10,53592) (#16571) 5-(33,10,44352) (#16572) 5-(32,10,36432) (#16575)
5-(33,9,9240) (#12494) 5-(32,9,7920) (#12495)
5-(32,8,1320) (#8474)
- family 42, lambda = 1335 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 43, lambda = 1380 containing 10 designs:
minpath=(0, 2, 0) minimal_t=5
-
7-(34,10,1380) (#16589)
-
6-(34,10,9660) (#16590) 6-(33,10,8280) (#16591)
6-(33,9,1380) (#12505)
-
5-(34,10,56028) (#16595) 5-(33,10,46368) (#16596) 5-(32,10,38088) (#16599)
5-(33,9,9660) (#12506) 5-(32,9,8280) (#12507)
5-(32,8,1380) (#8488)
- family 44, lambda = 1410 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
- family 45, lambda = 1455 containing 1 designs:
minpath=(0, 4, 0) minimal_t=5
created: Fri Oct 23 11:20:58 CEST 2009