design clan: 9_20_10
9-(20,10,m*1), 1 <= m <= 5; (5/49) lambda_max=11, lambda_max_half=5
the clan contains 5 families:
- family 0, lambda = 1 containing 4 designs:
minpath=(0, 0, 0) minimal_t=3
-
9-(20,10,1)
-
8-(20,10,6) 8-(19,10,5)
8-(19,9,1)
-
7-(20,10,26) 7-(19,10,20) 7-(18,10,15)
7-(19,9,6) 7-(18,9,5)
7-(18,8,1)
-
6-(20,10,91) 6-(19,10,65) 6-(18,10,45) 6-(17,10,30)
6-(19,9,26) 6-(18,9,20) 6-(17,9,15)
6-(18,8,6) 6-(17,8,5)
6-(17,7,1)
-
5-(20,10,273) (#930) 5-(19,10,182) 5-(18,10,117) 5-(17,10,72) 5-(16,10,42)
5-(19,9,91) 5-(18,9,65) (#748) 5-(17,9,45) 5-(16,9,30)
5-(18,8,26) 5-(17,8,20) 5-(16,8,15)
5-(17,7,6) 5-(16,7,5)
5-(16,6,1)
-
4-(20,10,728) 4-(19,10,455) 4-(18,10,273) 4-(17,10,156) 4-(16,10,84) 4-(15,10,42)
4-(19,9,273) 4-(18,9,182) 4-(17,9,117) 4-(16,9,72) 4-(15,9,42)
4-(18,8,91) 4-(17,8,65) 4-(16,8,45) 4-(15,8,30)
4-(17,7,26) 4-(16,7,20) 4-(15,7,15)
4-(16,6,6) (#50) 4-(15,6,5)
4-(15,5,1)
-
3-(20,10,1768) 3-(19,10,1040) 3-(18,10,585) 3-(17,10,312) 3-(16,10,156) 3-(15,10,72) 3-(14,10,30)
3-(19,9,728) 3-(18,9,455) 3-(17,9,273) 3-(16,9,156) 3-(15,9,84) 3-(14,9,42)
3-(18,8,273) 3-(17,8,182) 3-(16,8,117) 3-(15,8,72) 3-(14,8,42)
3-(17,7,91) 3-(16,7,65) 3-(15,7,45) 3-(14,7,30)
3-(16,6,26) 3-(15,6,20) 3-(14,6,15)
3-(15,5,6) 3-(14,5,5) (#1)
3-(14,4,1)
- family 1, lambda = 2 containing 9 designs:
minpath=(0, 0, 0) minimal_t=4
-
9-(20,10,2)
-
8-(20,10,12) 8-(19,10,10)
8-(19,9,2)
-
7-(20,10,52) 7-(19,10,40) 7-(18,10,30)
7-(19,9,12) 7-(18,9,10)
7-(18,8,2)
-
6-(20,10,182) 6-(19,10,130) 6-(18,10,90) 6-(17,10,60)
6-(19,9,52) 6-(18,9,40) 6-(17,9,30)
6-(18,8,12) 6-(17,8,10)
6-(17,7,2)
-
5-(20,10,546) (#555) 5-(19,10,364) (#556) 5-(18,10,234) 5-(17,10,144) 5-(16,10,84)
5-(19,9,182) (#554) 5-(18,9,130) (#553) 5-(17,9,90) 5-(16,9,60)
5-(18,8,52) (#499) 5-(17,8,40) 5-(16,8,30) (#29)
5-(17,7,12) (#455) 5-(16,7,10)
5-(16,6,2)
-
4-(20,10,1456) 4-(19,10,910) 4-(18,10,546) 4-(17,10,312) 4-(16,10,168) 4-(15,10,84)
4-(19,9,546) 4-(18,9,364) 4-(17,9,234) 4-(16,9,144) 4-(15,9,84)
4-(18,8,182) 4-(17,8,130) 4-(16,8,90) 4-(15,8,60)
4-(17,7,52) 4-(16,7,40) 4-(15,7,30) (#28)
4-(16,6,12) 4-(15,6,10)
4-(15,5,2) (#23)
- family 2, lambda = 3 containing 12 designs:
minpath=(0, 0, 0) minimal_t=4
-
9-(20,10,3)
-
8-(20,10,18) 8-(19,10,15)
8-(19,9,3)
-
7-(20,10,78) 7-(19,10,60) 7-(18,10,45)
7-(19,9,18) 7-(18,9,15)
7-(18,8,3)
-
6-(20,10,273) 6-(19,10,195) 6-(18,10,135) 6-(17,10,90)
6-(19,9,78) 6-(18,9,60) 6-(17,9,45)
6-(18,8,18) 6-(17,8,15)
6-(17,7,3)
-
5-(20,10,819) (#434) 5-(19,10,546) (#435) 5-(18,10,351) 5-(17,10,216) 5-(16,10,126)
5-(19,9,273) (#433) 5-(18,9,195) (#431) 5-(17,9,135) (#432) 5-(16,9,90)
5-(18,8,78) (#430) 5-(17,8,60) (#429) 5-(16,8,45) (#35)
5-(17,7,18) (#428) 5-(16,7,15) (#427)
5-(16,6,3) (#424)
-
4-(20,10,2184) 4-(19,10,1365) 4-(18,10,819) 4-(17,10,468) 4-(16,10,252) 4-(15,10,126)
4-(19,9,819) 4-(18,9,546) 4-(17,9,351) 4-(16,9,216) 4-(15,9,126)
4-(18,8,273) 4-(17,8,195) 4-(16,8,135) 4-(15,8,90)
4-(17,7,78) 4-(16,7,60) 4-(15,7,45) (#34)
4-(16,6,18) 4-(15,6,15)
4-(15,5,3)
- family 3, lambda = 4 containing 12 designs:
minpath=(0, 0, 0) minimal_t=4
-
9-(20,10,4)
-
8-(20,10,24) 8-(19,10,20)
8-(19,9,4)
-
7-(20,10,104) 7-(19,10,80) 7-(18,10,60)
7-(19,9,24) 7-(18,9,20)
7-(18,8,4)
-
6-(20,10,364) 6-(19,10,260) 6-(18,10,180) 6-(17,10,120)
6-(19,9,104) 6-(18,9,80) 6-(17,9,60)
6-(18,8,24) 6-(17,8,20)
6-(17,7,4)
-
5-(20,10,1092) (#443) 5-(19,10,728) (#444) 5-(18,10,468) 5-(17,10,288) 5-(16,10,168)
5-(19,9,364) (#442) 5-(18,9,260) (#440) 5-(17,9,180) (#441) 5-(16,9,120)
5-(18,8,104) (#439) 5-(17,8,80) (#438) 5-(16,8,60) (#41)
5-(17,7,24) (#437) 5-(16,7,20) (#436)
5-(16,6,4) (#425)
-
4-(20,10,2912) 4-(19,10,1820) 4-(18,10,1092) 4-(17,10,624) 4-(16,10,336) 4-(15,10,168)
4-(19,9,1092) 4-(18,9,728) 4-(17,9,468) 4-(16,9,288) 4-(15,9,168)
4-(18,8,364) 4-(17,8,260) 4-(16,8,180) 4-(15,8,120)
4-(17,7,104) 4-(16,7,80) 4-(15,7,60) (#40)
4-(16,6,24) 4-(15,6,20)
4-(15,5,4)
- family 4, lambda = 5 containing 12 designs:
minpath=(0, 0, 0) minimal_t=4
-
9-(20,10,5)
-
8-(20,10,30) 8-(19,10,25)
8-(19,9,5)
-
7-(20,10,130) 7-(19,10,100) 7-(18,10,75)
7-(19,9,30) 7-(18,9,25)
7-(18,8,5)
-
6-(20,10,455) 6-(19,10,325) 6-(18,10,225) 6-(17,10,150)
6-(19,9,130) 6-(18,9,100) 6-(17,9,75)
6-(18,8,30) 6-(17,8,25)
6-(17,7,5)
-
5-(20,10,1365) (#452) 5-(19,10,910) (#453) 5-(18,10,585) 5-(17,10,360) 5-(16,10,210)
5-(19,9,455) (#451) 5-(18,9,325) (#449) 5-(17,9,225) (#450) 5-(16,9,150)
5-(18,8,130) (#448) 5-(17,8,100) (#447) 5-(16,8,75) (#47)
5-(17,7,30) (#446) 5-(16,7,25) (#445)
5-(16,6,5) (#426)
-
4-(20,10,3640) 4-(19,10,2275) 4-(18,10,1365) 4-(17,10,780) 4-(16,10,420) 4-(15,10,210)
4-(19,9,1365) 4-(18,9,910) 4-(17,9,585) 4-(16,9,360) 4-(15,9,210)
4-(18,8,455) 4-(17,8,325) 4-(16,8,225) 4-(15,8,150)
4-(17,7,130) 4-(16,7,100) 4-(15,7,75) (#46)
4-(16,6,30) 4-(15,6,25)
4-(15,5,5)
created: Fri Oct 23 11:20:56 CEST 2009