design clan: 8_31_10
8-(31,10,m*1), 1 <= m <= 126; (109/576) lambda_max=253, lambda_max_half=126
the clan contains 109 families:
- family 0, lambda = 1 containing 1 designs:
minpath=(0, 3, 0) minimal_t=5
- family 1, lambda = 3 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 2, lambda = 4 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 3, lambda = 5 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 4, lambda = 6 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 5, lambda = 7 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 6, lambda = 8 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 7, lambda = 9 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 8, lambda = 10 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 9, lambda = 12 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 10, lambda = 13 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 11, lambda = 14 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 12, lambda = 15 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,15)
-
6-(30,9,120) 6-(29,9,105) (#12073)
6-(29,8,15)
-
5-(30,9,750) (#8134) 5-(29,9,630) (#8133) 5-(28,9,525) (#8132)
5-(29,8,120) (#7773) 5-(28,8,105) (#7772)
5-(28,7,15) (#7742)
- family 13, lambda = 16 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 14, lambda = 17 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 15, lambda = 18 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
- family 16, lambda = 19 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 17, lambda = 20 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 18, lambda = 21 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,21)
-
6-(30,9,168) 6-(29,9,147)
6-(29,8,21)
-
5-(30,9,1050) (#8143) 5-(29,9,882) (#8142) 5-(28,9,735) (#8141)
5-(29,8,168) (#7780) 5-(28,8,147) (#7779)
5-(28,7,21) (#7743)
- family 19, lambda = 24 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 20, lambda = 25 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 21, lambda = 26 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 22, lambda = 27 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 23, lambda = 28 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,28)
-
6-(30,9,224) 6-(29,9,196)
6-(29,8,28)
-
5-(30,9,1400) (#8156) 5-(29,9,1176) (#8155) 5-(28,9,980) (#8154)
5-(29,8,224) (#7790) 5-(28,8,196) (#7789)
5-(28,7,28) (#7746)
- family 24, lambda = 29 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 25, lambda = 30 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,30)
-
6-(30,9,240) 6-(29,9,210)
6-(29,8,30)
-
5-(30,9,1500) (#7967) 5-(29,9,1260) (#7966) 5-(28,9,1050) (#7965)
5-(29,8,240) (#7795) 5-(28,8,210) (#7794)
5-(28,7,30) (#7720)
- family 26, lambda = 31 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 27, lambda = 32 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 28, lambda = 34 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 29, lambda = 35 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 30, lambda = 36 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,36)
-
7-(31,10,288) 7-(30,10,252)
7-(30,9,36)
-
6-(31,10,1800) (#12194) 6-(30,10,1512) (#12189) 6-(29,10,1260)
6-(30,9,288) (#12088) 6-(29,9,252) (#12085)
6-(29,8,36) (#12021)
-
5-(31,10,9360) (#12195) 5-(30,10,7560) (#12190) 5-(29,10,6048) (#12191) 5-(28,10,4788)
5-(30,9,1800) (#7978) 5-(29,9,1512) (#7977) 5-(28,9,1260) (#7976)
5-(29,8,288) (#7805) 5-(28,8,252) (#7804)
5-(28,7,36) (#7749)
- family 31, lambda = 37 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 32, lambda = 38 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 33, lambda = 39 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 34, lambda = 40 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,40)
-
6-(30,9,320) 6-(29,9,280)
6-(29,8,40)
-
5-(30,9,2000) (#7987) 5-(29,9,1680) (#7986) 5-(28,9,1400) (#7985)
5-(29,8,320) (#7811) 5-(28,8,280) (#7810)
5-(28,7,40) (#7723)
- family 35, lambda = 41 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 36, lambda = 42 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,42)
-
7-(31,10,336) 7-(30,10,294)
7-(30,9,42)
-
6-(31,10,2100) (#12202) 6-(30,10,1764) (#12197) 6-(29,10,1470)
6-(30,9,336) (#12093) 6-(29,9,294) (#12090)
6-(29,8,42) (#12025)
-
5-(31,10,10920) (#12203) 5-(30,10,8820) (#12198) 5-(29,10,7056) (#12199) 5-(28,10,5586)
5-(30,9,2100) (#7990) 5-(29,9,1764) (#7989) 5-(28,9,1470) (#7988)
5-(29,8,336) (#7814) 5-(28,8,294) (#7813)
5-(28,7,42) (#7750)
- family 37, lambda = 43 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,43)
-
6-(30,9,344) 6-(29,9,301)
6-(29,8,43) (#12029)
-
5-(30,9,2150) (#7993) 5-(29,9,1806) (#7992) 5-(28,9,1505) (#7991)
5-(29,8,344) (#7816) 5-(28,8,301) (#7815)
5-(28,7,43) (#7724)
- family 38, lambda = 45 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 39, lambda = 47 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 40, lambda = 48 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 41, lambda = 49 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,49)
-
6-(30,9,392) 6-(29,9,343)
6-(29,8,49) (#12033)
-
5-(30,9,2450) (#8002) 5-(29,9,2058) (#8001) 5-(28,9,1715) (#8000)
5-(29,8,392) (#7823) 5-(28,8,343) (#7822)
5-(28,7,49) (#7751)
- family 42, lambda = 50 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 43, lambda = 51 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 44, lambda = 52 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 45, lambda = 53 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 46, lambda = 54 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,378) (#15853)
-
6-(30,10,2268) (#15854) 6-(29,10,1890) (#15856)
6-(29,9,378) (#15855)
-
5-(30,10,11340) (#15860) 5-(29,10,9072) (#15861) 5-(28,10,7182) (#15867)
5-(29,9,2268) (#8008) 5-(28,9,1890) (#8007)
5-(28,8,378) (#7830)
- family 47, lambda = 56 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 48, lambda = 57 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,57)
-
6-(30,9,456) 6-(29,9,399)
6-(29,8,57) (#12037)
-
5-(30,9,2850) (#8013) 5-(29,9,2394) (#8012) 5-(28,9,1995) (#8011)
5-(29,8,456) (#7835) 5-(28,8,399) (#7834)
5-(28,7,57) (#7754)
- family 49, lambda = 58 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
- family 50, lambda = 59 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 51, lambda = 60 containing 17 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,60)
-
7-(31,10,480) (#16068) 7-(30,10,420) (#15869)
7-(30,9,60)
-
6-(31,10,3000) (#16069) 6-(30,10,2520) (#15870) 6-(29,10,2100) (#15872)
6-(30,9,480) (#16070) 6-(29,9,420) (#15871)
6-(29,8,60)
-
5-(31,10,15600) (#15885) 5-(30,10,12600) (#15876) 5-(29,10,10080) (#15877) 5-(28,10,7980) (#15883)
5-(30,9,3000) (#8018) 5-(29,9,2520) (#8017) 5-(28,9,2100) (#8016)
5-(29,8,480) (#7840) 5-(28,8,420) (#7839)
5-(28,7,60) (#7725)
- family 52, lambda = 61 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 53, lambda = 62 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 54, lambda = 63 containing 10 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,63) (#16055)
-
6-(30,9,504) (#16056) 6-(29,9,441) (#16057)
6-(29,8,63) (#12041)
-
5-(30,9,3150) (#8023) 5-(29,9,2646) (#8022) 5-(28,9,2205) (#8021)
5-(29,8,504) (#7844) 5-(28,8,441) (#7843)
5-(28,7,63) (#7726)
- family 55, lambda = 64 containing 15 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,64)
-
7-(31,10,512) 7-(30,10,448)
7-(30,9,64) (#16064)
-
6-(31,10,3200) (#12210) 6-(30,10,2688) (#12205) 6-(29,10,2240)
6-(30,9,512) (#12102) 6-(29,9,448) (#12099)
6-(29,8,64) (#12045)
-
5-(31,10,16640) (#12211) 5-(30,10,13440) (#12206) 5-(29,10,10752) (#12207) 5-(28,10,8512)
5-(30,9,3200) (#8026) 5-(29,9,2688) (#8025) 5-(28,9,2240) (#8024)
5-(29,8,512) (#7846) 5-(28,8,448) (#7845)
5-(28,7,64) (#7755)
- family 56, lambda = 65 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 57, lambda = 67 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
- family 58, lambda = 68 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 59, lambda = 70 containing 9 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,70)
-
6-(30,9,560) (#12120) 6-(29,9,490) (#12117)
6-(29,8,70) (#12049)
-
5-(30,9,3500) (#8035) 5-(29,9,2940) (#8034) 5-(28,9,2450) (#8033)
5-(29,8,560) (#7855) 5-(28,8,490) (#7854)
5-(28,7,70) (#7727)
- family 60, lambda = 71 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 61, lambda = 72 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,504) (#15886)
-
6-(30,10,3024) (#15887) 6-(29,10,2520) (#15888)
6-(29,9,504) (#12122)
-
5-(30,10,15120) (#15892) 5-(29,10,12096) (#15893) 5-(28,10,9576) (#15896)
5-(29,9,3024) (#8037) 5-(28,9,2520) (#8036)
5-(28,8,504) (#7858)
- family 62, lambda = 73 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,73)
-
6-(30,9,584) 6-(29,9,511)
6-(29,8,73)
-
5-(30,9,3650) (#8040) 5-(29,9,3066) (#8039) 5-(28,9,2555) (#8038)
5-(29,8,584) (#7860) 5-(28,8,511) (#7859)
5-(28,7,73) (#7728)
- family 63, lambda = 74 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 64, lambda = 75 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 65, lambda = 76 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,532) (#15898)
-
6-(30,10,3192) (#15899) 6-(29,10,2660) (#15900)
6-(29,9,532) (#12126)
-
5-(30,10,15960) (#15904) 5-(29,10,12768) (#15905) 5-(28,10,10108) (#15908)
5-(29,9,3192) (#8044) 5-(28,9,2660) (#8043)
5-(28,8,532) (#7863)
- family 66, lambda = 78 containing 17 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,78)
-
7-(31,10,624) 7-(30,10,546) (#15910)
7-(30,9,78)
-
6-(31,10,3900) (#15928) 6-(30,10,3276) (#15911) 6-(29,10,2730) (#15913)
6-(30,9,624) (#15923) 6-(29,9,546) (#15912)
6-(29,8,78) (#12053)
-
5-(31,10,20280) (#15926) 5-(30,10,16380) (#15917) 5-(29,10,13104) (#15918) 5-(28,10,10374) (#15924)
5-(30,9,3900) (#8047) 5-(29,9,3276) (#8046) 5-(28,9,2730) (#8045)
5-(29,8,624) (#7868) 5-(28,8,546) (#7867)
5-(28,7,78) (#7760)
- family 67, lambda = 79 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 68, lambda = 80 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 69, lambda = 81 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,567) (#15930)
-
6-(30,10,3402) (#15931) 6-(29,10,2835) (#15933)
6-(29,9,567) (#15932)
-
5-(30,10,17010) (#15937) 5-(29,10,13608) (#15938) 5-(28,10,10773) (#15944)
5-(29,9,3402) (#8051) 5-(28,9,2835) (#8050)
5-(28,8,567) (#7873)
- family 70, lambda = 82 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 71, lambda = 83 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 72, lambda = 84 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,84)
-
6-(30,9,672) 6-(29,9,588)
6-(29,8,84) (#12057)
-
5-(30,9,4200) (#8056) 5-(29,9,3528) (#8055) 5-(28,9,2940) (#8054)
5-(29,8,672) (#7877) 5-(28,8,588) (#7876)
5-(28,7,84) (#7762)
- family 73, lambda = 85 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,85)
-
7-(31,10,680) 7-(30,10,595)
7-(30,9,85)
-
6-(31,10,4250) (#12226) 6-(30,10,3570) (#12221) 6-(29,10,2975)
6-(30,9,680) (#12133) 6-(29,9,595) (#12130)
6-(29,8,85) (#12061)
-
5-(31,10,22100) (#12227) 5-(30,10,17850) (#12222) 5-(29,10,14280) (#12223) 5-(28,10,11305)
5-(30,9,4250) (#8059) 5-(29,9,3570) (#8058) 5-(28,9,2975) (#8057)
5-(29,8,680) (#7879) 5-(28,8,595) (#7878)
5-(28,7,85) (#7763)
- family 74, lambda = 86 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 75, lambda = 87 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,609) (#15946)
-
6-(30,10,3654) (#15947) 6-(29,10,3045) (#15949)
6-(29,9,609) (#15948)
-
5-(30,10,18270) (#15953) 5-(29,10,14616) (#15954) 5-(28,10,11571) (#15960)
5-(29,9,3654) (#8061) 5-(28,9,3045) (#8060)
5-(28,8,609) (#7881)
- family 76, lambda = 89 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 77, lambda = 90 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,90)
-
7-(31,10,720) 7-(30,10,630) (#15962)
7-(30,9,90)
-
6-(31,10,4500) 6-(30,10,3780) (#15963) 6-(29,10,3150) (#15964)
6-(30,9,720) 6-(29,9,630) (#12135)
6-(29,8,90)
-
5-(31,10,23400) (#15974) 5-(30,10,18900) (#15968) 5-(29,10,15120) (#15969) 5-(28,10,11970) (#15972)
5-(30,9,4500) (#8068) 5-(29,9,3780) (#8067) 5-(28,9,3150) (#8066)
5-(29,8,720) (#7888) 5-(28,8,630) (#7887)
5-(28,7,90) (#7729)
- family 78, lambda = 91 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,91)
-
6-(30,9,728) 6-(29,9,637)
6-(29,8,91) (#12065)
-
5-(30,9,4550) (#8071) 5-(29,9,3822) (#8070) 5-(28,9,3185) (#8069)
5-(29,8,728) (#7890) 5-(28,8,637) (#7889)
5-(28,7,91) (#7766)
- family 79, lambda = 93 containing 20 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,93) (#18017)
-
7-(31,10,744) (#16076) 7-(30,10,651) (#18019)
7-(30,9,93) (#18018)
-
6-(31,10,4650) (#16077) 6-(30,10,3906) (#16079) 6-(29,10,3255) (#18027)
6-(30,9,744) (#16078) 6-(29,9,651) (#18024)
6-(29,8,93) (#18023)
-
5-(31,10,24180) (#16083) 5-(30,10,19530) (#16084) 5-(29,10,15624) (#16090) 5-(28,10,12369) (#18032)
5-(30,9,4650) (#8074) 5-(29,9,3906) (#8073) 5-(28,9,3255) (#8072)
5-(29,8,744) (#7894) 5-(28,8,651) (#7893)
5-(28,7,93) (#7730)
- family 80, lambda = 94 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 81, lambda = 95 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 82, lambda = 96 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,672) (#15975)
-
6-(30,10,4032) (#15976) 6-(29,10,3360) (#15977)
6-(29,9,672) (#12139)
-
5-(30,10,20160) (#15981) 5-(29,10,16128) (#15982) 5-(28,10,12768) (#15985)
5-(29,9,4032) (#8078) 5-(28,9,3360) (#8077)
5-(28,8,672) (#7897)
- family 83, lambda = 97 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 84, lambda = 98 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 85, lambda = 100 containing 20 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,100) (#18000)
-
7-(31,10,800) (#16092) 7-(30,10,700) (#18002)
7-(30,9,100) (#18001)
-
6-(31,10,5000) (#16093) 6-(30,10,4200) (#16095) 6-(29,10,3500) (#18010)
6-(30,9,800) (#16094) 6-(29,9,700) (#18007)
6-(29,8,100) (#18006)
-
5-(31,10,26000) (#16099) 5-(30,10,21000) (#16100) 5-(29,10,16800) (#16106) 5-(28,10,13300) (#18015)
5-(30,9,5000) (#8089) 5-(29,9,4200) (#8088) 5-(28,9,3500) (#8087)
5-(29,8,800) (#7906) 5-(28,8,700) (#7905)
5-(28,7,100) (#7731)
- family 86, lambda = 101 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 87, lambda = 102 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
- family 88, lambda = 103 containing 6 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,103)
-
6-(30,9,824) 6-(29,9,721)
6-(29,8,103)
-
5-(30,9,5150) (#8094) 5-(29,9,4326) (#8093) 5-(28,9,3605) (#8092)
5-(29,8,824) (#7910) 5-(28,8,721) (#7909)
5-(28,7,103) (#7732)
- family 89, lambda = 104 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 90, lambda = 105 containing 19 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,105)
-
7-(31,10,840) (#16049) 7-(30,10,735) (#15994)
7-(30,9,105) (#16046)
-
6-(31,10,5250) (#12243) 6-(30,10,4410) (#12238) 6-(29,10,3675) (#15995)
6-(30,9,840) (#12155) 6-(29,9,735) (#12152)
6-(29,8,105) (#12003)
-
5-(31,10,27300) (#12244) 5-(30,10,22050) (#12239) 5-(29,10,17640) (#12240) 5-(28,10,13965) (#15999)
5-(30,9,5250) (#8097) 5-(29,9,4410) (#8096) 5-(28,9,3675) (#8095)
5-(29,8,840) (#7913) 5-(28,8,735) (#7912)
5-(28,7,105) (#7735)
- family 91, lambda = 106 containing 7 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,106)
-
6-(30,9,848) 6-(29,9,742)
6-(29,8,106) (#12007)
-
5-(30,9,5300) (#8100) 5-(29,9,4452) (#8099) 5-(28,9,3710) (#8098)
5-(29,8,848) (#7915) 5-(28,8,742) (#7914)
5-(28,7,106) (#7736)
- family 92, lambda = 107 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 93, lambda = 108 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,756) (#16001)
-
6-(30,10,4536) (#16002) 6-(29,10,3780) (#16003)
6-(29,9,756) (#12157)
-
5-(30,10,22680) (#16007) 5-(29,10,18144) (#16008) 5-(28,10,14364) (#16011)
5-(29,9,4536) (#8102) 5-(28,9,3780) (#8101)
5-(28,8,756) (#7917)
- family 94, lambda = 109 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,763) (#16013)
-
6-(30,10,4578) (#16014) 6-(29,10,3815) (#16016)
6-(29,9,763) (#16015)
-
5-(30,10,22890) (#16020) 5-(29,10,18312) (#16021) 5-(28,10,14497) (#16027)
5-(29,9,4578) (#8104) 5-(28,9,3815) (#8103)
5-(28,8,763) (#7918)
- family 95, lambda = 111 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 96, lambda = 112 containing 15 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,112)
-
7-(31,10,896) 7-(30,10,784)
7-(30,9,112) (#16051)
-
6-(31,10,5600) (#12251) 6-(30,10,4704) (#12246) 6-(29,10,3920)
6-(30,9,896) (#12164) 6-(29,9,784) (#12161)
6-(29,8,112) (#12011)
-
5-(31,10,29120) (#12252) 5-(30,10,23520) (#12247) 5-(29,10,18816) (#12248) 5-(28,10,14896)
5-(30,9,5600) (#8109) 5-(29,9,4704) (#8108) 5-(28,9,3920) (#8107)
5-(29,8,896) (#7923) 5-(28,8,784) (#7922)
5-(28,7,112) (#7737)
- family 97, lambda = 113 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 98, lambda = 114 containing 4 designs:
minpath=(0, 1, 1) minimal_t=5
- family 99, lambda = 116 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 100, lambda = 117 containing 10 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,819) (#16029)
-
6-(30,10,4914) (#12170) 6-(29,10,4095) (#11973)
6-(29,9,819) (#12169)
-
5-(30,10,24570) (#11979) 5-(29,10,19656) (#11974) 5-(28,10,15561) (#11975)
5-(29,9,4914) (#8115) 5-(28,9,4095) (#8114)
5-(28,8,819) (#7929)
- family 101, lambda = 118 containing 7 designs:
minpath=(0, 0, 1) minimal_t=5
-
7-(30,10,826)
-
6-(30,10,4956) (#12254) 6-(29,10,4130)
6-(29,9,826) (#12171)
-
5-(30,10,24780) (#12255) 5-(29,10,19824) (#12256) 5-(28,10,15694)
5-(29,9,4956) (#8117) 5-(28,9,4130) (#8116)
5-(28,8,826) (#7930)
- family 102, lambda = 119 containing 3 designs:
minpath=(0, 2, 0) minimal_t=5
- family 103, lambda = 120 containing 9 designs:
minpath=(0, 1, 0) minimal_t=5
-
7-(30,9,120)
-
6-(30,9,960) (#12177) 6-(29,9,840) (#12174)
6-(29,8,120) (#12014)
-
5-(30,9,6000) (#8122) 5-(29,9,5040) (#8121) 5-(28,9,4200) (#8120)
5-(29,8,960) (#7935) 5-(28,8,840) (#7934)
5-(28,7,120) (#7733)
- family 104, lambda = 122 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 105, lambda = 123 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,123)
-
7-(31,10,984) 7-(30,10,861) (#16042)
7-(30,9,123)
-
6-(31,10,6150) 6-(30,10,5166) (#12180) 6-(29,10,4305) (#11982)
6-(30,9,984) 6-(29,9,861) (#12179)
6-(29,8,123)
-
5-(31,10,31980) (#11990) 5-(30,10,25830) (#11988) 5-(29,10,20664) (#11983) 5-(28,10,16359) (#11984)
5-(30,9,6150) (#8127) 5-(29,9,5166) (#8126) 5-(28,9,4305) (#8125)
5-(29,8,984) (#7939) 5-(28,8,861) (#7938)
5-(28,7,123) (#7734)
- family 106, lambda = 124 containing 3 designs:
minpath=(0, 1, 1) minimal_t=5
- family 107, lambda = 125 containing 1 designs:
minpath=(0, 2, 1) minimal_t=5
- family 108, lambda = 126 containing 14 designs:
minpath=(0, 0, 0) minimal_t=5
-
8-(31,10,126)
-
7-(31,10,1008) 7-(30,10,882)
7-(30,9,126)
-
6-(31,10,6300) (#12276) 6-(30,10,5292) (#12271) 6-(29,10,4410)
6-(30,9,1008) (#12186) 6-(29,9,882) (#12181)
6-(29,8,126) (#12017)
-
5-(31,10,32760) (#12277) 5-(30,10,26460) (#12272) 5-(29,10,21168) (#12273) 5-(28,10,16758)
5-(30,9,6300) (#12187) 5-(29,9,5292) (#12182) 5-(28,9,4410) (#12183)
5-(29,8,1008) (#7943) 5-(28,8,882) (#7942)
5-(28,7,126) (#7740)
created: Fri Oct 23 11:20:53 CEST 2009