design clan: 10_37_12
10-(37,12,m*9), 1 <= m <= 19; (11/98) lambda_max=351, lambda_max_half=175
the clan contains 11 families:
- family 0, lambda = 9 containing 7 designs:
minpath=(0, 2, 1) minimal_t=5
-
7-(34,10,75)
-
6-(34,10,525) 6-(33,10,450) (#12359)
6-(33,9,75)
-
5-(34,10,3045) (#12367) 5-(33,10,2520) (#12360) 5-(32,10,2070) (#12362)
5-(33,9,525) (#12366) 5-(32,9,450) (#12361)
5-(32,8,75) (#8208)
- family 1, lambda = 36 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(35,10,36)
-
7-(35,10,336) 7-(34,10,300)
7-(34,9,36)
-
6-(35,10,2436) (#12711) 6-(34,10,2100) (#12706) 6-(33,10,1800)
6-(34,9,336) (#12562) 6-(33,9,300) (#12557)
6-(33,8,36) (#12415)
-
5-(35,10,14616) (#12712) 5-(34,10,12180) (#12707) 5-(33,10,10080) (#12708) 5-(32,10,8280)
5-(34,9,2436) (#12563) 5-(33,9,2100) (#12558) 5-(32,9,1800) (#12559)
5-(33,8,336) (#8249) 5-(32,8,300) (#8248)
5-(32,7,36) (#8172)
- family 2, lambda = 45 containing 3 designs:
minpath=(0, 4, 0) minimal_t=5
- family 3, lambda = 63 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(35,10,63)
-
7-(35,10,588) 7-(34,10,525) (#16340)
7-(34,9,63)
-
6-(35,10,4263) 6-(34,10,3675) (#12744) 6-(33,10,3150) (#12377)
6-(34,9,588) 6-(33,9,525) (#16341)
6-(33,8,63)
-
5-(35,10,25578) (#12387) 5-(34,10,21315) (#12386) 5-(33,10,17640) (#12378) 5-(32,10,14490) (#12380)
5-(34,9,4263) (#12385) 5-(33,9,3675) (#12384) 5-(32,9,3150) (#12379)
5-(33,8,588) (#8296) 5-(32,8,525) (#8295)
5-(32,7,63) (#8176)
- family 4, lambda = 72 containing 10 designs:
minpath=(0, 2, 1) minimal_t=5
-
7-(34,10,600) (#16346)
-
6-(34,10,4200) (#12752) 6-(33,10,3600) (#16347)
6-(33,9,600) (#12612)
-
5-(34,10,24360) (#12753) 5-(33,10,20160) (#12754) 5-(32,10,16560) (#16351)
5-(33,9,4200) (#12613) 5-(32,9,3600) (#12614)
5-(32,8,600) (#8312)
- family 5, lambda = 90 containing 9 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(35,10,90)
-
7-(35,10,840) 7-(34,10,750)
7-(34,9,90)
-
6-(35,10,6090) 6-(34,10,5250) (#12784) 6-(33,10,4500)
6-(34,9,840) 6-(33,9,750)
6-(33,8,90)
-
5-(35,10,36540) (#12792) 5-(34,10,30450) (#12785) 5-(33,10,25200) (#12787) 5-(32,10,20700)
5-(34,9,6090) (#12791) 5-(33,9,5250) (#12786) 5-(32,9,4500)
5-(33,8,840) (#8348) 5-(32,8,750) (#8347)
5-(32,7,90) (#8183)
- family 6, lambda = 99 containing 14 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(35,10,99)
-
7-(35,10,924) 7-(34,10,825) (#16398)
7-(34,9,99)
-
6-(35,10,6699) 6-(34,10,5775) (#16399) 6-(33,10,4950) (#16400)
6-(34,9,924) 6-(33,9,825) (#12654)
6-(33,8,99)
-
5-(35,10,40194) (#16410) 5-(34,10,33495) (#16404) 5-(33,10,27720) (#16405) 5-(32,10,22770) (#16408)
5-(34,9,6699) (#12660) 5-(33,9,5775) (#12655) 5-(32,9,4950) (#12656)
5-(33,8,924) (#8365) 5-(32,8,825) (#8364)
5-(32,7,99) (#8185)
- family 7, lambda = 126 containing 3 designs:
minpath=(0, 4, 0) minimal_t=5
- family 8, lambda = 144 containing 4 designs:
minpath=(0, 3, 1) minimal_t=5
- family 9, lambda = 153 containing 1 designs:
minpath=(0, 4, 1) minimal_t=5
- family 10, lambda = 171 containing 19 designs:
minpath=(0, 2, 0) minimal_t=5
-
8-(35,10,171)
-
7-(35,10,1596) (#16606) 7-(34,10,1425) (#16601)
7-(34,9,171) (#16331)
-
6-(35,10,11571) (#16611) 6-(34,10,9975) (#16602) 6-(33,10,8550) (#16603)
6-(34,9,1596) (#16332) 6-(33,9,1425) (#12511)
6-(33,8,171) (#16333)
-
5-(35,10,69426) (#16615) 5-(34,10,57855) (#16607) 5-(33,10,47880) (#16608) 5-(32,10,39330) (#16612)
5-(34,9,11571) (#12517) 5-(33,9,9975) (#12512) 5-(32,9,8550) (#12513)
5-(33,8,1596) (#8499) 5-(32,8,1425) (#8498)
5-(32,7,171) (#8199)
created: Fri Oct 23 11:21:00 CEST 2009