Construction of codes for cryptographic purposes using groups of automorphisms

Axel Kohnert Vlora May 2008

Bayreuth University Germany axel.kohnert@uni-bayreuth.de

Overview

Boolean functions in cyptography: which are the good ones?

- Boolean functions in cyptography: which are the good ones?
- Construction of good cryptographic functions: use linear codes.

- Boolean functions in cyptography: which are the good ones?
- Construction of good cryptographic functions: use linear codes.
- Construction of linear codes providing good cryptographic functions.

• Boolean function: $GF(2)^s \rightarrow GF(2)$

• Boolean function: $GF(2)^s \rightarrow GF(2)$

• Boolean function: $GF(2)^s \rightarrow GF(2)$

• Boolean function: $GF(2)^s \rightarrow GF(2)$

 SBOX = substituting s input bits by l output bits = set of l Boolean functions

• Security of a Boolean function $f: GF(2)^s \to GF(2)$

- Security of a Boolean function $f: GF(2)^s \to GF(2)$
- Definition: a function $f: GF(2)^s \to GF(2)$ is m-**resilient** if we can fix any set of m input bits (m < s) and the reduced function with only 2^{s-m} different inputs gives 0 and 1 equally often.

- Security of a Boolean function $f: GF(2)^s \to GF(2)$
- Definition: a function $f: GF(2)^s \to GF(2)$ is m-**resilient** if we can fix any set of m input bits (m < s) and the reduced function with only 2^{s-m} different inputs gives 0 and 1 equally often.
- $f: GF(2)^s \to GF(2)$ satisfies the **extended propagation criteria** EPC(l) of order m if for each Δ with $1 \le wt(\Delta) \le l$ the difference function $f(x) + f(x + \Delta)$ is m-resilient.

• This definition is motivated by possible attacks against Boolean functions representing S-boxes.

- This definition is motivated by possible attacks against Boolean functions representing S-boxes.
- There are several constructions known.

Linear Codes and Cryptography

• linear $[n, k]_q$ -code C = k-dimensional subspace of $GF(q)^n$

- linear $[n, k]_q$ -code C = k-dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = { $v \in GF(q)^n : cv^T = 0$ for all $c \in C$ } is an $[n, n - k]_q$ -code

- linear $[n, k]_q$ -code C = k-dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = { $v \in GF(q)^n : cv^T = 0$ for all $c \in C$ } is an $[n, n - k]_q$ -code
- Hamming weight w(v) = number of non-zero coordinates of the codeword v

- linear $[n, k]_q$ -code C = k-dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = { $v \in GF(q)^n : cv^T = 0$ for all $c \in C$ } is an $[n, n - k]_q$ -code
- Hamming weight w(v) = number of non-zero coordinates of the codeword v
- Hamming distance d(v, w) = number of different coordinates = w(v w)

- linear $[n, k]_q$ -code C = k-dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = { $v \in GF(q)^n : cv^T = 0$ for all $c \in C$ } is an $[n, n - k]_q$ -code
- Hamming weight w(v) = number of non-zero coordinates of the codeword v
- Hamming distance d(v, w) = number of different coordinates = w(v w)
- Minimum distance = $min\{d(v, w) : v \neq w \in C\}$ = $min\{w(v) : v \in C \setminus 0\}$

Linear Codes and Cryptography

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}
- dual distance d^{\perp} = minimum distance of C^{\perp}

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}
- dual distance d^{\perp} = minimum distance of C^{\perp}
- primal distance d = minimum distance of C

Theorem:Kurosawa et al. From an $[n, k]_2$ -code C with primal distance d and dual distance d^{\perp} , we get a Boolean Funktion $f: GF(2)^{2n} \to GF(2)$ satisfying $EPC(d^{\perp}-1)$ of order d-1.

From an $[n, k]_2$ -code C with primal distance d and dual distance d^{\perp} , we get a Boolean Funktion $f: GF(2)^{2n} \to GF(2)$ satisfying $EPC(d^{\perp}-1)$ of order d-1.

• Let Γ be a generator matrix of C, then

$$f: (x_1, \dots, x_n, x_{n+1}, \dots, x_{2n}) \mapsto (x_1, \dots, x_n) (\Gamma^T \cdot \Gamma) (x_{n+1}, \dots, x_{2n})$$

 Describe linear codes using finite projective geometry

- Describe linear codes using finite projective geometry
- Describe primal distance using finite projective geometry

- Describe linear codes using finite projective geometry
- Describe primal distance using finite projective geometry
- Describe dual distance using finite projective geometry

Construction of Linear Codes

• $[n,k]_q$ - code *C* with generator matrix $\Gamma = (\gamma_1, \dots, \gamma_n)$.

- $[n,k]_q$ code *C* with generator matrix $\Gamma = (\gamma_1, \dots, \gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives an equivalent code.

- $[n,k]_q$ code *C* with generator matrix $\Gamma = (\gamma_1, \dots, \gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives an equivalent code.
- Work with the *n*-set $\{\gamma_1, \ldots, \gamma_n\}$ of columns up to multiplication with a nonzero scalar.

- $[n,k]_q$ code *C* with generator matrix $\Gamma = (\gamma_1, \dots, \gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives an equivalent code.
- Work with the *n*-set $\{\gamma_1, \ldots, \gamma_n\}$ of columns up to multiplication with a nonzero scalar.
- $C \leftrightarrow \text{set of } n \text{ points } \{\gamma_1, \dots, \gamma_n\}$ in finite projective geometry PG(k-1, q)

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- codeword $c = v \cdot \Gamma = v\gamma_1, \ldots, v\gamma_n$ given by n inner products with $v \in GF(q)^k$

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- codeword $c = v \cdot \Gamma = v\gamma_1, \ldots, v\gamma_n$ given by n inner products with $v \in GF(q)^k$
- weight of c is invariant under scalar multiplication of v with a nonzero field element

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- codeword $c = v \cdot \Gamma = v\gamma_1, \ldots, v\gamma_n$ given by n inner products with $v \in GF(q)^k$
- weight of c is invariant under scalar multiplication of v with a nonzero field element
- to get all codewords $c = v \cdot \Gamma$ up to scalar multiplicaton loop v over all points from PG(k-1,q)

• weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $c\gamma_i \neq 0$

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $c\gamma_i \neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to v

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $c\gamma_i \neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to v
- weight of a codeword vΓ is n- number of points from {γ₁,..., γ_n} which are orthogonal to v

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $c\gamma_i \neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to v
- weight of a codeword vΓ is n- number of points from {γ₁,..., γ_n} which are orthogonal to v
- weight of a codeword vΓ is n number of points from {γ₁,..., γ_n} in the hyperplane v[⊥]

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ s.t. $c\gamma_i \neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to v
- weight of a codeword vΓ is n- number of points from {γ₁,..., γ_n} which are orthogonal to v
- weight of a codeword vΓ is n number of points from {γ₁,..., γ_n} in the hyperplane v[⊥]
- minimum weight $\geq d$ iff each hyperplane v^{\perp} contains $\leq n d$ points from $\{\gamma_1, \ldots, \gamma_n\}$.

 use this point - hyperplane incidence property to describe the minimum distance by a linear Diophantine system

- use this point hyperplane incidence property to describe the minimum distance by a linear Diophantine system
- D := incidence matrix between points (=columns) and hyperplanes (=rows) of PG(k-1,q)

- use this point hyperplane incidence property to describe the minimum distance by a linear Diophantine system
- D := incidence matrix between points (=columns) and hyperplanes (=rows) of PG(k-1,q)
- *D* is a $m \times m$ (0/1)-matrix where m :=number of points in PG(k-1,q)

Theorem: There is a $[n, k, \ge d]_q$ -code iff there is an integral solution $x = (x_1, \dots, x_m)^T$ with $x_i \ge 0$ of

1.
$$\sum x_i = n$$

2.
$$Dx \leq \begin{pmatrix} n-d \\ \vdots \\ n-d \end{pmatrix}$$

Construction of a $[4,3,2]_2$ -code. Working in PG(2,2).

Construction of a $[4,3,2]_2$ -code. Working in PG(2,2).

		001	010	011	100	101	110	111
$\rightarrow D =$	001	0	1	0	1	0	1	0
	010	1	0	0	1	1	0	0
	011	0	0	1	1	0	0	1
	100	1	1	1	0	0	0	0
	101	0	1	0	0	1	0	1
	110	1	0	0	0	0	1	1
	111	0	0	1	0	1	1	0

Find 4 columns such that in each row the sum is at most 2

$\rightarrow D =$		001	010	011	100	101	110	111
	001	0	1	0	1	0	1	0
	010	1	0	0	1	1	0	0
	011	0	0	1	1	0	0	1
	100	1	1	1	0	0	0	0
	101	0	1	0	0	1	0	1
	110	1	0	0	0	0	1	1
	111	0	0	1	0	1	1	0

Find 4 columns such that in each row the sum is at most 2

column 1, 2, 5, 6 gives generator matrix

$$\left(\begin{array}{cccc} 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 1 & 0 \end{array}\right)_{.-p.15/26}$$

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

 if field size:
 $q = 2 \cdot 2 \cdot q = 2 \cdot 2 \cdot q = 2, 3, 4, 5, 7, 8, 9$

 length:
 $n = 1 \le n \le 256, 243, 256, 130, 100, 130, 130$

 dimension:
 $k = 1 \le k \le n$

 lookup

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

 If field size:
 q = 2 q = 2, 3, 4, 5, 7, 8, 9

 length:
 n = 1 $1 \le n \le 256, 243, 256, 130, 100, 130, 130$

 dimension:
 k = 1 $1 \le k \le n$

 lookup
 $1 \le k \le n$

real example: $q = 5 \ k = 7 \ n = 26$, size of $D = (5^7 - 1)/4 = 19531$

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q) Bounds & construction of a linear code [n,k,d] over GF(q) if field size: $q = 2 \cdot q = 2,3,4,5,7,8,9$ length: $n = 1 \le n \le 256,243,256,130,100,130,130$ dimension: $k = 1 \le k \le n$ lookup

real example: $q = 5 \ k = 7 \ n = 26$, size of $D = (5^7 - 1)/4 = 19531$ $\binom{19531}{26} = 883054593166020333938364412031365545034453566027539929$ selections of columns

 Prescribe automorphisms {M ∈ PGL(k − 1, q)} of a point set corresponding to a solution.

- Prescribe automorphisms {M ∈ PGL(k − 1, q)} of a point set corresponding to a solution.
- A point set $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ has an automorphism M iff $M\gamma_i \in \Gamma$ for all γ_i

- Prescribe automorphisms {M ∈ PGL(k − 1, q)} of a point set corresponding to a solution.
- A point set $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ has an automorphism M iff $M\gamma_i \in \Gamma$ for all γ_i
- A solution is now built by orbits of the group *G* generated by $\{M\}$.

- Prescribe automorphisms {M ∈ PGL(k − 1, q)} of a point set corresponding to a solution.
- A point set $\Gamma = \{\gamma_1, \dots, \gamma_n\}$ has an automorphism M iff $M\gamma_i \in \Gamma$ for all γ_i
- A solution is now built by orbits of the group *G* generated by $\{M\}$.
- The size of D can be reduced by adding up columns corresponding to points of an orbit under G.

Automorphisms

• Automorphisms *M* are compatible with the incidence structure:

- Automorphisms *M* are compatible with the incidence structure:
- for a point *p* and a line (hyperplane,...) *L* we have

$$p \in L \iff Mp \in ML$$

- Automorphisms *M* are compatible with the incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$p \in L \iff Mp \in ML$$

 Rows of D corresponding to hyperplanes in the same orbit are equal after adding up the columns

- Automorphisms *M* are compatible with the incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$p \in L \iff Mp \in ML$$

- Rows of D corresponding to hyperplanes in the same orbit are equal after adding up the columns
- We remove duplicate rows =: D^G

- Automorphisms *M* are compatible with the incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$p \in L \iff Mp \in ML$$

- Rows of D corresponding to hyperplanes in the same orbit are equal after adding up the columns
- We remove duplicate rows =: D^G
- D^G is a square matrix, size = number of orbits on points = number of orbits on hyperplanes

Theorem(Braun,K,Wassermann):

Let G < PGL(k - 1, q) with *m* orbits on the points of PG(k - 1, q). There is an $[n, k]_q$ -code with primal distance *d* and with symmetries from *G* iff there is an integral solution $x = (x_1, \ldots, x_m)^T$ with $x_i \ge 0$ of $(x_1, \ldots, x_m)^T$ with $x_i \ge 0$ of

1)
$$\sum \omega_i x_i = n$$
 2) $D^G x \leq \begin{pmatrix} n-a \\ \vdots \\ n-d \end{pmatrix}$

where ω_i is the size of the *i*-th orbit of *G* on the points of PG(k-1,q).

Newest Result

www.codetables.de

Bounds on linear codes [26,7] over GF(5)

lower bound: 16 upper bound: 16

Construction

Construction type: Kohnert

Construction of a linear code [26,7,16] over GF(5): [1]: [26, 7, 16] Linear Code over GF(5) Code found by Axel Kohnert Construction from a stored generator matrix

last modified: 2008-05-05

number of orbits = 1695orbits of size 12, 6, 4, 3, 14 orbits used to build the generator matrix

known:

An $[n,k]_q$ -code *C* has primal distance $\geq d \iff$ each (d-1)-set of columns of a check matrix of *C* is linearly independent

known:

An $[n,k]_q$ -code *C* has primal distance $\geq d \iff$ each (d-1)-set of columns of a check matrix of *C* is linearly independent

dual version:

An $[n,k]_q$ -code *C* has dual distance $\geq d^{\perp} \iff$ each $(d^{\perp}-1)$ -set of columns of a generator matrix of *C* is linearly independent

Example $d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of PG(k - 1, q). D_2 : incidence matrix between points (columns) and lines (rows) of PG(k - 1, q).

Example $d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of PG(k-1,q). D_2 : incidence matrix between points (columns) and lines (rows) of PG(k-1,q). Theorem: There is an $[n,k]_q$ -code with $d^{\perp} \geq 4$ iff there is an integral solution $x = (x_1, \ldots, x_m)^T$ with $x_i \ge 0$ of 1) $\sum x_i = n$ 2) $D_2 x \leq \begin{pmatrix} 2 \\ \vdots \\ 2 \end{pmatrix}$

Example $d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of PG(k-1,q). D_2 : incidence matrix between points (columns) and lines (rows) of PG(k-1,q). Theorem: There is an $[n,k]_q$ -code with $d^{\perp} \geq 4$ iff there is an integral solution $x = (x_1, \ldots, x_m)^T$ with $x_i \ge 0$ of 1) $\sum x_i = n$ 2) $D_2 x \leq \begin{pmatrix} 2 \\ \vdots \\ 2 \end{pmatrix}$

This is a general method to prescribe primal and dual distance. And you can use automorphisms again.

Method

typical Theorem:

There is an $[n, k]_q$ -code with primal distance d and dual distance 5 and with symmetries from G iff there is an integral solution $x = (x_1, \ldots, x_m)^T$ with $x_i \ge 0$ of

1)
$$\sum \omega_i x_i = n$$
 2) $D^G x \leq \begin{pmatrix} n-d \\ \vdots \\ n-d \end{pmatrix}$ 3) $D_3^G x \leq \begin{pmatrix} 3 \\ \vdots \\ 3 \end{pmatrix}$

Matsumoto et al. (2006) defined the number $N(d, d^{\perp})$ as the minimal length of a linear binary code with minimum distance d and dual distance d^{\perp} . Using above construction we got codes giving new upper bounds.

$d\backslash d^{\perp}$	3	4	5	6	7	8
3	6					
4	7	8				
5	11	13	16			
6	12	14	17	18		
7	14	15	19 - 20	20 - 21	22	
8	15	16	20 - 21	21 - 22	23	24

Caps in projective geometry PG(k-1,q) are codes having dual distance 4. The optimal cap problem is the search for a code with dual distance 4 and maximal length n.

In the case q = 3 and k = 7 we found several new $[112, 7]_3$ -codes with dual distance 4.

- linearcodes.uni-bayreuth.de
- Betten, Braun, Fripertinger, Kerber, Kohnert, Wassermann: Error-Correcting Linear Codes -Classification by Isometry and Applications, ACM Vol. 18, Springer 2006, 42.75 Euro til end of July
- Matsumoto et al.: Primal-dual distance bounds of linear codes with application to cryptography, IEEE Trans. Inform. Theory 52 (2006), 4251–4256

- linearcodes.uni-bayreuth.de
- Betten, Braun, Fripertinger, Kerber, Kohnert, Wassermann: Error-Correcting Linear Codes -Classification by Isometry and Applications, ACM Vol. 18, Springer 2006, 42.75 Euro til end of July
- Matsumoto et al.: Primal-dual distance bounds of linear codes with application to cryptography, IEEE Trans. Inform. Theory 52 (2006), 4251–4256

Thank you very much for your attention.

