Construction of codes forcryptographic purposesusing groups ofautomorphisms

Axel Kohnert Vlora May 2008

Bayreuth University Germanyaxel.kohnert@uni-bayreuth.de

Overview

 \bullet Boolean functions in cyptography: which are thegood ones?

- \bullet Boolean functions in cyptography: which are thegood ones?
- Construction of good cryptographic functions: uselinear codes.

- • Boolean functions in cyptography: which are thegood ones?
- Construction of good cryptographic functions: uselinear codes.
- Construction of linear codes providing goodcryptographic functions.

 \bullet • Boolean function: $GF(2)^s$ $s \rightarrow GF(2)$

 $. - p.3/26$

\bullet Boolean function: $GF(2)^s \rightarrow GF(2)$

 \bullet Boolean function: $GF(2)^s \rightarrow GF(2)$

 \bullet Boolean function: $GF(2)^s \rightarrow GF(2)$

• SBOX = substituting s input bits by l output bits = set of *l* Boolean functions

\bullet • Security of a Boolean function $f: GF(2)^s$ $s \rightarrow GF(2)$

- •Security of a Boolean function $f: GF(2)^s \rightarrow GF(2)$
- •• Definition: a function $f: GF(2)^s \rightarrow GF(2)$ is
m_**resiliant** if we can fix any set of m innu m−**resilient** if we can fix any set of m input bits
(☞ ≤ ≤) and the reduced function with enly <u>as=</u>m $(m < s)$ and the reduced function with only 2^{s-m} different inputs gives 0 and 1 equally often.

- •Security of a Boolean function $f: GF(2)^s \rightarrow GF(2)$
- •• Definition: a function $f: GF(2)^s \rightarrow GF(2)$ is
m_**resiliant** if we can fix any set of m innu m−**resilient** if we can fix any set of m input bits
(☞ ≤ ≤) and the reduced function with enly <u>as=</u>m $(m < s)$ and the reduced function with only 2^{s-m} different inputs gives 0 and 1 equally often.
- $f: GF(2)^s \rightarrow GF(2)$ satisfies the **extended**
propagation criteria $FPT(l)$ of order m if **propagation criteria** $EPC(l)$ of order m if for
each A with 1 \leq wt(A) \leq 1 the difference funct each Δ with $1 \leq wt(\Delta) \leq l$ the difference function $f(x) + f(x + \Delta)$ is m−resilient.

• This definition is motivated by possible attacksagainst Boolean functions representing S-boxes.

- This definition is motivated by possible attacksagainst Boolean functions representing S-boxes.
- There are several constructions known.

Linear Codes and Cryptography

 \bullet • linear $[n, k]_q$ -code $C=k$ –dimensional subspace of $GF(q)^n$

- •• linear $[n, k]_q$ -code $C=k$ –dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = $\{v \in GF(q)^n\}$ for all $c \in C\}$ is an $[n, n-k]_q$ -co \cdots : cv $T=0$ $k]_q\textrm{-}\mathsf{code}$

- •• linear $[n, k]_q$ -code $C=k$ –dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = $\{v \in GF(q)^n\}$ for all $c \in C\}$ is an $[n, n-k]_q$ -co \cdots : cv $T=0$ $k]_q\textrm{-}\mathsf{code}$
- Hamming weight $w(v)$ = number of non-zero coordinates of the codeword v

- •• linear $[n, k]_q$ -code $C=k$ –dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = $\{v \in GF(q)^n\}$ for all $c \in C\}$ is an $[n, n-k]_q$ -co \cdots : cv $T=0$ $k]_q\textrm{-}\mathsf{code}$
- Hamming weight $w(v)$ = number of non-zero coordinates of the codeword v
- Hamming distance $d(v, w)$ = number of different coordinates = $w(v-w)$

- •• linear $[n, k]_q$ -code $C=k$ –dimensional subspace of $GF(q)^n$
- dual code C^{\perp} = dual space = $\{v \in GF(q)^n\}$ for all $c \in C\}$ is an $[n, n-k]_q$ -co \cdots : cv $T=0$ $k]_q\textrm{-}\mathsf{code}$
- Hamming weight $w(v)$ = number of non-zero coordinates of the codeword v
- Hamming distance $d(v, w)$ = number of different coordinates = $w(v-w)$
- Minimum distance = $min{d(v, w) : v \neq w \in C}$ = $min\{w(v): v \in C \backslash 0\}$

Linear Codes and Cryptography

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}
- dual distance d^{\perp} = minimum distance of C^{\perp}

- generator matrix Γ , rows are a basis of C
- check matrix, generator matrix of C^{\perp}
- dual distance d^{\perp} = minimum distance of C^{\perp}
- primal distance $d =$ minimum distance of C

 Theorem:Kurosawa et al. From an $[n,k]_2-$ code C with primal distance d and dual distance $d^{\perp}.$ we get l $f: GF(2)^{2n} \rightarrow GF(2)$ satisfying $EPC(c)$, we get ^a Boolean Funktion $\, n \,$ ${}^{n}\rightarrow GF(2)$ satisfying $EPC(d^{\perp}-1)$ of order $d-1.$

•

- • **Theorem**:Kurosawa et al. From an $[n,k]_2-$ code C with primal distance d and dual distance $d^{\perp}.$ we get l $f: GF(2)^{2n} \rightarrow GF(2)$ satisfying $EPC(c)$, we get ^a Boolean Funktion $\, n \,$ ${}^{n}\rightarrow GF(2)$ satisfying $EPC(d^{\perp}-1)$ of order $d-1.$
- Let Γ be a generator matrix of C , then

$$
f:(x_1,\ldots,x_n,x_{n+1},\ldots,x_{2n})\mapsto
$$

$$
(x_1,\ldots,x_n)(\Gamma^T\cdot\Gamma)(x_{n+1},\ldots,x_{2n})
$$

 \bullet Describe linear codes using finite projectivegeometry

- \bullet Describe linear codes using finite projectivegeometry
- \bullet Describe primal distance using finite projectivegeometry

- • Describe linear codes using finite projectivegeometry
- \bullet Describe primal distance using finite projectivegeometry
- Describe dual distance using finite projectivegeometry

• $[n, k]_q$ - code C with generator matrix $\Gamma=(\gamma_1,\ldots,\gamma_n)$.

- $[n, k]_q$ code C with generator matrix $\Gamma=(\gamma_1,\ldots,\gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives anequivalent code.

- $[n, k]_q$ code C with generator matrix $\Gamma=(\gamma_1,\ldots,\gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives anequivalent code.
- Work with the $n-$ set $\{\gamma_1, \ldots, \gamma_n\}$ of columns up to multiplication with ^a nonzero scalar.

- $[n, k]_q$ code C with generator matrix $\Gamma=(\gamma_1,\ldots,\gamma_n)$.
- Multiplication of a column γ_i by a nonzero field element or permuting the columns gives anequivalent code.
- Work with the $n-$ set $\{\gamma_1, \ldots, \gamma_n\}$ of columns up to multiplication with ^a nonzero scalar.
- $\bullet\; \;C \;{\leftrightarrow}$ set of n geometry $PG(k-1, q)$ n points $\{\gamma_1,\ldots,\gamma_n\}$ in finite projective $1, q)$

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- codeword $c=v\cdot\Gamma=v\gamma_1,\ldots,v\gamma_n$ given by products with $v\in GF(q)^k$ $\, n \,$ \overline{n} inner

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- •• codeword $c=v\cdot\Gamma=v\gamma_1,\ldots,v\gamma_n$ given by products with $v\in GF(q)^k$ $\, n \,$ \overline{n} inner
- weight of c $\it c$ is invariant under scalar multiplication Of v \overline{v} with a nonzero field element

- generator matrix $\Gamma = (\gamma_1, \ldots, \gamma_n)$.
- codeword $c=v\cdot\Gamma=v\gamma_1,\ldots,v\gamma_n$ given by products with $v\in GF(q)^k$ $\, n \,$ \overline{n} inner
- weight of c $\it c$ is invariant under scalar multiplication Of v \overline{v} with a nonzero field element
- to get all codewords $c=v\cdot\Gamma$ up to scalar multiplicaton loop v ov \overline{v} over all points from $PG(k 1, q)$

\bullet • weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $c\gamma_i\neq 0$

- •• weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $c\gamma_i\neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to $v\,$

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $c\gamma_i\neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to $v\,$
- weight of a codeword $v\Gamma$ is from $\{\gamma_1, \ldots, \gamma_n\}$ which are orthogonal to $n-\,$ number of points $v\,$

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $c\gamma_i\neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to $v\,$
- weight of a codeword $v\Gamma$ is from $\{\gamma_1, \ldots, \gamma_n\}$ which are orthogonal to $n-\,$ number of points $v\,$
- weight of a codeword $v\Gamma$ is from $\{\gamma_1, \ldots, \gamma_n\}$ in the hyperplane $n-\,$ - number of points $v\,$ ⊥

- weight of a codeword $c = v\Gamma = v\gamma_1, \ldots, v\gamma_n$ is the number of points from $\{\gamma_1,\ldots,\gamma_n\}$ s.t. $c\gamma_i\neq 0$
- weight of a codeword $v\Gamma$ is the number of points from $\{\gamma_1, \ldots, \gamma_n\}$ which are not orthogonal to $v\,$
- weight of a codeword $v\Gamma$ is from $\{\gamma_1, \ldots, \gamma_n\}$ which are orthogonal to $n-\,$ number of points $v\,$
- weight of a codeword $v\Gamma$ is from $\{\gamma_1, \ldots, \gamma_n\}$ in the hyperplane $n-\,$ - number of points $v\,$ ⊥
- minimum weight $\geq d$ iff each hyperplane contains $\leq n-d$ points from $\{\gamma_1, \ldots, \gamma_n\}.$ $v\,$ ⊥

 \bullet use this point - hyperplane incidence property todescribe the minimum distance by ^a linearDiophantine system

- use this point hyperplane incidence property todescribe the minimum distance by ^a linearDiophantine system
- $D :=$ incidence matrix between points (=columns) and hyperplanes (=rows) of $PG(k 1, q)$

- use this point hyperplane incidence property todescribe the minimum distance by ^a linearDiophantine system
- $D :=$ incidence matrix between points (=columns) and hyperplanes (=rows) of $PG(k 1, q)$
- D is a
pointe $m\times m$ $(0/1)$ −matrix where m $m:=$ number of points in $\textit{PG}(k 1, q)$

Theorem: There is a $[n, k, \ge d]_q-$ code iff there is an integral solution $x=(x_1,\ldots,x_m)^T$ with $x_i\geq 0$ of

$$
1. \sum x_i = n
$$

$$
2. \; Dx \leq \left(\begin{array}{c} n-d \\ \vdots \\ n-d \end{array}\right)
$$

Construction of a $[4, 3, 2]_2$ −code. Working in $PG(2, 2)$.

Construction of a $[4, 3, 2]_2$ −code. Working in $PG(2, 2)$.

Find 4 columns such that in each row the sum is at most 2

Find 4 columns such that in each row the sum is at most 2

column

n 1, 2, 5, 6 gives generator matrix
$$
\begin{pmatrix} 0 & 0 & 1 & 1 \ 0 & 1 & 0 & 1 \ 1 & 0 & 1 & 0 \end{pmatrix}_{\text{p.15/2}}
$$

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q)

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q)

Bounds & construction of a linear code [n,k,d] over GF(q)

if field size: $q = \boxed{2}$ $\boxed{3}$ $q=2,3,4,5,7,8,9$ length: 1≤n≤256,243,256,130,100,130,130 $n=$ $dimension: k=$ 1≤k≤n lookup

real example: $q=5$ $k=7$ n $n = 26$, size of $D =$ $(5^7$ −− $-1)/4$ =19531

Real Example

Database of best minimum distance possible: www.codetables.de

Bounds on linear codes [n,k,d] over GF(q) Bounds & construction of a linear code [n,k,d] over GF(q) $_{16}$ field size: $q=|2|$ $q=2,3,4,5,7,8,9$ 1≤n≤256,243,256,130,100,130,130 length: $n=$ $dimension: k=$ 1≤k≤n lookup

real example: $q=5$ $k=7$ n $n = 26$, size of $D =$ $(5^7$ $\binom{19531}{26}$ = −− $\frac{(-1)}{4}$ =19531 8830545931660203339383644120313655450344535660275399292=selections of columns

• Prescribe automorphisms $\{M \in PGL(k-\alpha)\}$ ^a point set corresponding to ^a solution. $1,q)\}$ of

- Prescribe automorphisms $\{M \in PGL(k-\alpha)\}$ ^a point set corresponding to ^a solution. $1,q)\}$ of
- A point set $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ has an automorphism M iff $M\gamma_i\in\Gamma$ for all γ_i

- Prescribe automorphisms $\{M \in PGL(k-\alpha)\}$ ^a point set corresponding to ^a solution. $1,q)\}$ of
- A point set $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ has an automorphism M iff $M\gamma_i\in\Gamma$ for all γ_i
- A solution is now built by orbits of the group G generated by $\{M\}.$

- Prescribe automorphisms $\{M \in PGL(k-\alpha)\}$ ^a point set corresponding to ^a solution. $1,q)\}$ of
- A point set $\Gamma = \{\gamma_1, \ldots, \gamma_n\}$ has an automorphism M iff $M\gamma_i\in\Gamma$ for all γ_i
- A solution is now built by orbits of the group G generated by $\{M\}.$
- The size of D can be reduced by adding up

solumes corresponding to points of an orbit columns corresponding to points of an orbit under G .

Automorphisms

 \bullet • Automorphisms M are compatible with the incidence structure: incidence structure:

- \bullet • Automorphisms M are compatible with the incidence structure: incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$
p \in L \iff Mp \in ML
$$

- •• Automorphisms M are compatible with the incidence structure: incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$
p \in L \iff Mp \in ML
$$

• Rows of *D* corresponding to hyperplanes in the same orbit are equal after adding up the columns

- •• Automorphisms M are compatible with the incidence structure: incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$
p \in L \iff Mp \in ML
$$

- Rows of *D* corresponding to hyperplanes in the same orbit are equal after adding up the columns
- We remove duplicate rows =: D^G

- •• Automorphisms M are compatible with the incidence structure: incidence structure:
- for a point p and a line (hyperplane,...) L we have

$$
p \in L \iff Mp \in ML
$$

- Rows of *D* corresponding to hyperplanes in the same orbit are equal after adding up the columns
- We remove duplicate rows =: D^G
- $\bullet\;\;D^G$ is a square matrix, size = number of orbits on points ⁼ number of orbits on hyperplanes

Theorem(Braun,K,Wassermann):

Let $G < PGL(k-$ **Th** $1,q)$ with $PG(k-1,q).$ There is an $\,m$ m orbits on the points of -1 $1,q)$. There is an $[n,k]_q-$ code with primal distance d and with symmetries from G iff there is an
intermal calction $\mathsf{collution} \times (\alpha \rightarrow \mathsf{Uun})$ integral solution $x=(x_1,\ldots,x_m)^T$ with $x_i\geq 0$ of

$$
\textbf{1) } \sum \omega_i x_i = n \qquad \textbf{2) } D^G x \leq \left(\begin{array}{c} n-d \\ \vdots \\ n-d \end{array} \right)
$$

where ω_i is the size of the $i-$ th orbit of G on the points
ef BGL of $PG(k 1,q).$

Newest Result

www.codetables.de

Bounds on linear codes [26,7] over GF(5)

lower bound: 16 upper bound: 16

Construction

Construction type: Kohnert

Construction of a linear code [26,7,16] over GF(5): $[1]: [26, 7, 16]$ Linear Code over GF (5) Code found by Axel Kohnert Construction from a stored generator matrix

last modified: 2008-05-05

 $number\ of\ orbits = 1695$ orbits of size $12, 6, 4, 3, 1$ 4 orbits used to build the generator matrix

known:

An $[n,k]_q$ –code C has primal distance $\geq d \iff$ each $(d-1)-$ set of columns of a check matrix of C is
linearly independent linearly independent

known:

An $[n,k]_q$ –code C has primal distance $\geq d \iff$ each $(d-1)-$ set of columns of a check matrix of C is
linearly independent linearly independent

dual version:

An $[n,k]_q-$ code C has dual distance $\geq d^\perp \iff$ each $(d^\perp-1)-$ set of columns of a generator matrix of
⊘ie lineerk indenendent C is linearly independent

Example $d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of $PG(k-1)$ $d^\perp=4$: no 3 points on a line of $PG(k-1,q).$ D_2 : incidence matrix between points (colur $_2$: incidence matrix between points (columns) and lines (rows) of $PG(k-1, q)$.

$\bm{Example}\ d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of $PG(k-1)$ D inoidence motive hetusen no 4° $1,q).$ D_2 : incidence matrix between points (col $_2$: incidence matrix between points (columns) and lines (rows) of $PG(k 1,q).$ **Theorem:**There is an $[n,k]_q-$ code with $d^\perp\geq 4$ iff there is an integral solution $x=(x_1,\ldots,x_m)^T$ with $x_i\geq 0$ of $\bigg($ 2 $\begin{array}{c} 2 \end{array}$

$$
\textbf{1) } \sum x_i = n \qquad \qquad \textbf{2) } D_2 x \leq \left(\begin{array}{c} \vdots \\ 2 \end{array} \right)
$$

$\bm{Example}\ d^{\perp} = 4$

 $d^{\perp} = 4$: no 3 points on a line of $PG(k-1)$ D inoidence motive hetusen no 4° $1,q).$ D_2 : incidence matrix between points (col $_2$: incidence matrix between points (columns) and lines (rows) of $PG(k 1,q).$ **Theorem:**There is an $[n,k]_q-$ code with $d^\perp\geq 4$ iff there is an integral solution $x=(x_1,\ldots,x_m)^T$ with $x_i\geq 0$ of $\overline{1}$ 1) $\sum x$ i = n 2) D 2 $\mathcal{X}% =\mathbb{R}^{2}\times\mathbb{R}^{2}$ ≤ $\bigg($ $\overline{\mathcal{L}}$ 2. . . 2 $\bigg)$ \int

This is ^a general method to prescribe primal and dual distance. And you can use automorphisms again.

Method

typical **Theorem**:

There is an $[n,k]_q-$ code with primal distance d and dual distance 5 and with symmetries from G iff there is Ω ution α (x α) Unith an integral solution $x = (x_1, \ldots, x_m)^T$ with $x_i \geq 0$ of $\int n-d$ $n-d$ $\bigg)$ $\bigg($ 3 $\bigg)$

$$
\textbf{1) } \sum \omega_i x_i = n \qquad \textbf{2) } D^G x \le \left(\begin{array}{c} \vdots \\ n - d \end{array} \right) \quad \textbf{3) } D_3^G x \le \left(\begin{array}{c} \vdots \\ 3 \end{array} \right)
$$

Matsumoto et al. (2006) defined the number $N(d, d^{\perp})$ as the minimal length of ^a linear binary code withminimum distance d and dual distance d^\perp . Using above construction we got codes giving new upper. Usingbounds.

Caps in projective geometry $PG(k-1)$ \sim \sim $1,q)$ are codes having dual distance $4.$ The optimal cap problem is the search for a code with dual distance 4 and maximal length \mathbf{n} .

In the case q $\left[112, 7\right]_{3}-$ codes with dual distance $4.$ $q = 3$ and $k = 7$ we found several new

- •linearcodes.uni-bayreuth.de
- Betten, Braun, Fripertinger, Kerber, Kohnert, Wassermann: Error-Correcting Linear Codes - Classification by Isometry and Applications , ACMVol. 18, Springer 2006, 42.75 Euro til end of July
- Matsumoto et al.: Primal-dual distance bounds of linear codes with application to cryptography, IEEE Trans. Inform. Theory 52 (2006), 4251–4256

- •linearcodes.uni-bayreuth.de
- Betten, Braun, Fripertinger, Kerber, Kohnert, Wassermann: Error-Correcting Linear Codes - Classification by Isometry and Applications , ACMVol. 18, Springer 2006, 42.75 Euro til end of July
- Matsumoto et al.: Primal-dual distance bounds of linear codes with application to cryptography, IEEE Trans. Inform. Theory 52 (2006), 4251–4256

Thank you very much for your attention.

