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Partition

A partition is a weakly decreasing sequence of non-negative
integers, where allmost all numbers are zero.

� � ��� ��� � � � � � � � � ���� � �

The weight of a partition is the sum over this sequence.

The length of a partition is the number of nonzero parts.
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Ferrers Diagram

Partitions are visualized by left adjusted boxes in the
first quadrant.
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Conjugate Partition

The conjugate partition

� �

is the sequence of
numbers of boxes in the columns.

6 4 2 =
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Graphical Partitions

A partition

�

is called graphical, if there is a simple
(undirected, no loops, no multi-edges) graph whose
vertex degree sequence equals

��

PSfrag replacements

graphical partitions only exist for even weight
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not all even weight partitions are graphical
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Open Questions

The number � ��� �

of graphical partitions of weight �

is smaller than � ��� � � the number of partitions.

�� � � !" � ��� �
� ��� � # $

Known:

�� � % & � �'

For the number of partitions there is a generating
function, which allows the fast computation of
For missing
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Criteria for being Graphical

Let

� # � �+* �+, � � � �

be a partition, there are
several known critera for

�

being graphical:

PSfrag replacements

Erdös-Gallai: for all

PSfrag replacements

Hässelbarth: for all Durfee size
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Durfee

X X Durfee square =

X X Durfee size =

9/21



PSfrag replacements

Durfee

X X Durfee square =

� � � � �

X X

Durfee size =

9/21



PSfrag replacements

Durfee

X X Durfee square =

� � � � �

X X Durfee size =

�

9/21



PSfrag replacements

Durfee Decomposition
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Dominance Order

The ’natural’ order on partitions.
Let K � L be two partitions

K L( MN �(
O

PRQ *
K P

O
PRQ *

L P

11/21



PSfrag replacements

New Criterion

Theorem
A partition

�

of even weight is graphical

S � � � � � �

12/21



PSfrag replacements

Recursion Formula (1)

��� � ( # set of graphical partitions of weight �

P��� � ( # set of graphical partitions of weight �

and Durfee size

�

�� � # * ��� � TVU � � � TU W X� Y ��� �

From the Durfee decomposition a bijection:
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Recursion Formula (2)

� � � N � � � � � ( # pairs of partitions
� K � L � withK L

� � K � # N � p K p # �

� � L � # � � p L p # �

rewrite above recursion with
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Recursion Formula (3)

L L

L L

L L L

L L L

R R

R R

R R

15/21



PSfrag replacements

Recursion Formula (3)

L L

L L

L L L

L L L

R R

R R

R R

16/21



PSfrag replacements

Recursion Formula (3)

L L

L L

L L L

L L L

R R

R R

R R

w 7 @E -FE B E x : y z A|{ }E~ ~ ~ E -

� { }E~ ~ ~ E x
w 7 @8 -FE A E B 8 x E � :

� 7 @E -FE B E x : { A|{ }E~ ~ ~ E -

� { }E~ ~ ~ E x
� 7 @8 -FE A E B 8 x E � :
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Telescoping Sum

For � � � (
� �\� � � � [ � 
 �

= e � � �� � � � �

� � ���� � � � 

� �\� l � � e � [ l 
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=
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Results

� � � � � � � � � � � � ���� � � �

100 69065657 190569292 .3624175

200 1.397805.210533 3.972999.029388 . 3518262

220 7.443670.977177 21.248279.009367 . 3503187

Barnes, Savage 1995
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1000 7.812520.197904 24.061467.864032 .3246900

.651287.725407.239942 .622473.692149.727991
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Concluding Remarks

Limiting factors:

memory to store intermediate results
(18GB for n=1000)

time if you do not store intermediate results
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Thank you very much for your attention.
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