Number of Graphical Partitions

Axel Kohnert

Bayreuth University kohnert@uni-bayreuth.de www.mathe2.uni-bayreuth.de

1/2

Partition

A partition is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

 $\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$

Partition

A partition is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

$$\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$$

The weight of a partition is the sum over this sequence.

 $|\lambda| = 12$

Partition

A partition is a weakly decreasing sequence of non-negative integers, where allmost all numbers are zero.

$$\lambda = 3, 3, 2, 2, 1, 1, 0, \dots$$

The weight of a partition is the sum over this sequence.

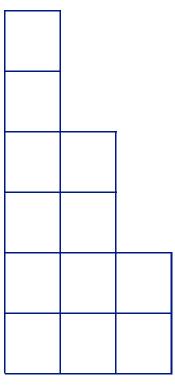
 $|\lambda| = 12$

The length of a partition is the number of nonzero parts.

$$l(\lambda) = 6$$

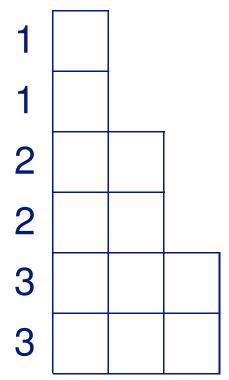
Ferrers Diagram

Partitions are visualized by left adjusted boxes in the first quadrant.



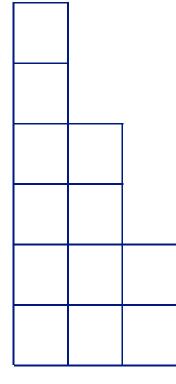
Ferrers Diagram

Partitions are visualized by left adjusted boxes in the first quadrant.



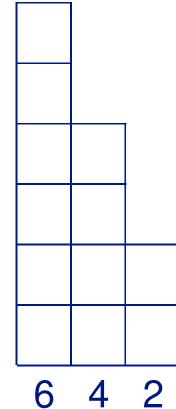
Conjugate Partition

The conjugate partition λ' is the sequence of numbers of boxes in the columns.



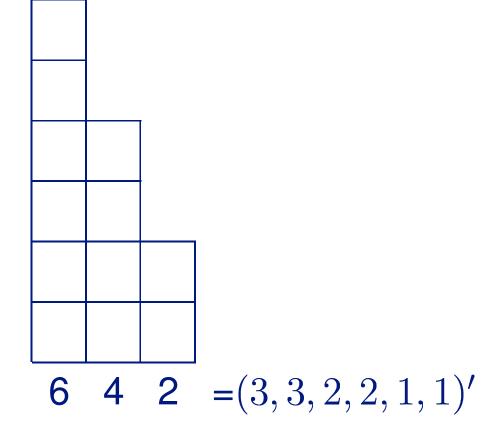
Conjugate Partition

The conjugate partition λ' is the sequence of numbers of boxes in the columns.



Conjugate Partition

The conjugate partition λ' is the sequence of numbers of boxes in the columns.



Graphical Partitions

A partition λ is called graphical, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

Graphical Partitions

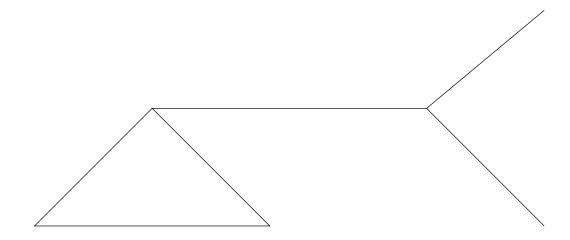
A partition λ is called graphical, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

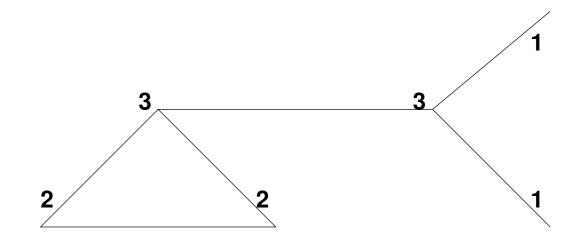
graphical partitions only exist for even weight

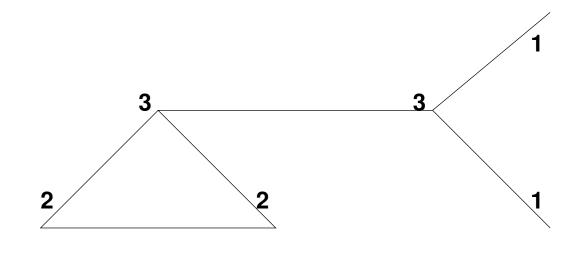
Graphical Partitions

A partition λ is called graphical, if there is a simple (undirected, no loops, no multi-edges) graph whose vertex degree sequence equals λ .

- graphical partitions only exist for even weight
- not all even weight partitions are graphical







Open Questions

The number g(n) of graphical partitions of weight n is smaller than p(n), the number of partitions.

$$\lim_{n \to \infty} \frac{g(n)}{p(n)} = ?$$

Known: *lim* < 0.25

Open Questions

The number g(n) of graphical partitions of weight n is smaller than p(n), the number of partitions.

$$\lim_{n \to \infty} \frac{g(n)}{p(n)} = ?$$

Known: *lim* < 0.25

For the number of partitions there is a generating function, which allows the fast computation of p(n). For g(n): missing

Criteria for being Graphical

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ be a partition, there are several known critera for λ being graphical:

Criteria for being Graphical

Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ be a partition, there are several known critera for λ being graphical:

• Erdös-Gallai: for all $k \ge 1$

$$\sum_{i=1}^{k} \lambda_i \le k(k-1) + \sum_{j=k+1}^{\infty} \min\{k, d_j\}$$

Criteria for being Graphical

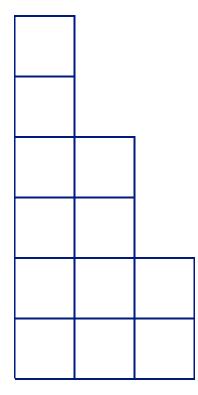
Let $\lambda = (\lambda_1 \ge \lambda_2 \ge ...)$ be a partition, there are several known critera for λ being graphical:

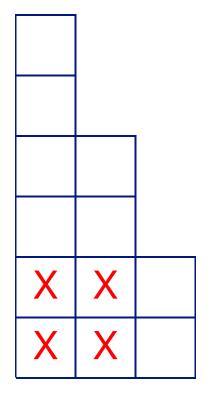
• Erdös-Gallai: for all $k \ge 1$

$$\sum_{i=1}^k \lambda_i \le k(k-1) + \sum_{j=k+1}^\infty \min\{k, d_j\}$$

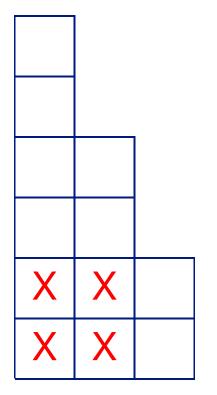
Hässelbarth: for all $k \leq$ Durfee size

$$\sum_{i=1}^k \lambda_i \le \sum_{i=1}^k (\lambda'_i - 1)$$





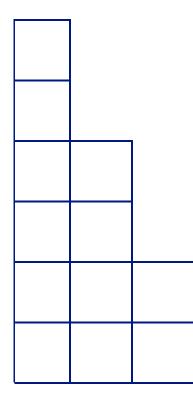
Durfee square = (2, 2)



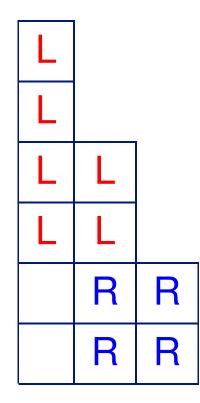
Durfee square = (2, 2)Durfee size = 2

9/2

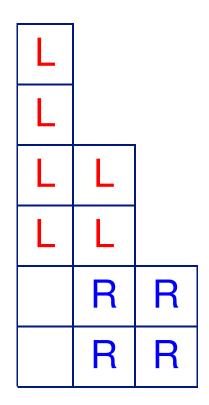
Durfee Decomposition



Durfee Decomposition



Durfee Decomposition



L = (4, 2)R = (2, 2)

10/2

Dominance Order

The 'natural' order on partitions. Let μ , ν be two partitions

$$\mu \succeq \nu :\Leftrightarrow \forall k \ge 1 : \sum_{i=1}^k \mu_i \ge \sum_{i=1}^k \nu_i$$

New Criterion

Theorem A partition λ of even weight is graphical

 $L(\lambda) \ge R(\lambda)$

12/2

Recursion Formula (1)

G(n) := set of graphical partitions of weight n

 $G_i(n) :=$ set of graphical partitions of weight nand Durfee size i

$$G(n) = G_1(n) \dot{\cup} \dots \dot{\cup} G_{\lceil \sqrt{n} \rceil}(n)$$

Recursion Formula (1)

- G(n) := set of graphical partitions of weight n
- $G_i(n)$:= set of graphical partitions of weight nand Durfee size i

$$G(n) = G_1(n) \dot{\cup} \dots \dot{\cup} G_{\lceil \sqrt{n} \rceil}(n)$$

From the Durfee decomposition a bijection:

$$\begin{split} \mu & \geq \nu \\ G_i(n) \longleftrightarrow \{ (\mu, \nu) \quad with \quad l(\mu) \leq i, l(\nu) = i \\ |\nu| + |\mu| = n - (i - 1) * i \end{split}$$

Recursion Formula (2)

 $P(m, k, n, l) := \text{ pairs of partitions } (\mu, \nu) \text{ with}$ $\mu \succeq \nu$ $l(\mu) = k, |\mu| = m$ $l(\nu) = l, |\nu| = n$

14/2

Recursion Formula (2)

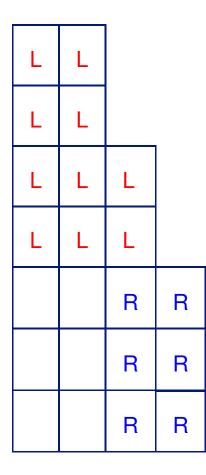
 $P(m, k, n, l) := \text{ pairs of partitions } (\mu, \nu) \text{ with}$ $\mu \succeq \nu$ $l(\mu) = k, |\mu| = m$ $l(\nu) = l, |\nu| = n$

rewrite above recursion with r = n - (i - 1) * i:

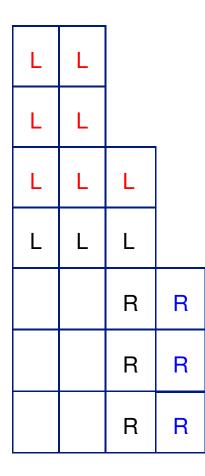
$$G_i(n) \longleftrightarrow \bigcup_{\substack{j = 1, \dots, i}} P(s, j, r - s, i)$$

 $s = 0, \dots, r$

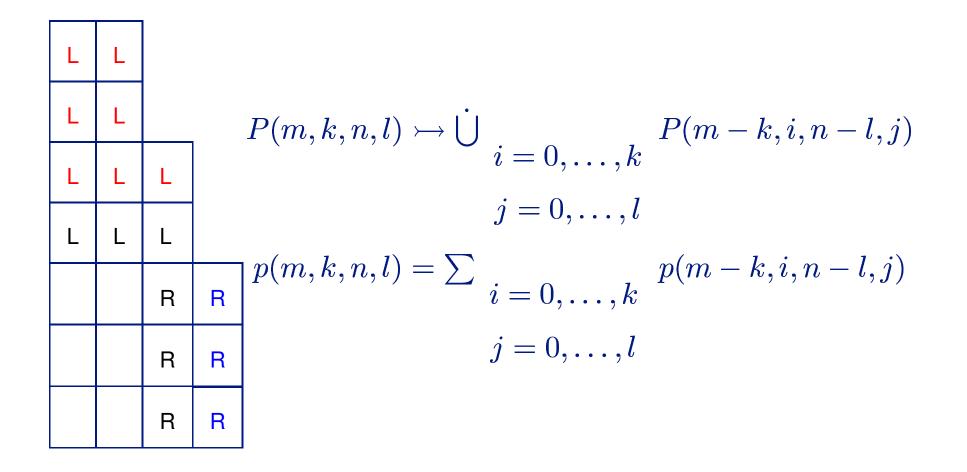
Recursion Formula (3)



Recursion Formula (3)



Recursion Formula (3)



Telescoping Sum

For m > n:

$$p(m, k, n, l) = \sum_{\substack{i = 0, \dots, k}} p(m - k, i, n - l, j)$$
$$j = 0, \dots, l$$

Telescoping Sum

For m > n:

$$p(m, k, n, l) = \sum_{i = 0, \dots, k} p(m - k, i, n - l, j)$$

$$j = 0, \dots, l$$

$$= p(m - 1, k - 1, n, l)$$

$$+ p(m, k, n - 1, l - 1)$$

$$- p(m - 1, k - 1, n - 1, l - 1)$$

$$+ p(m - k, k, n - l, l)$$

n	g(n)	p(n)	g(n)/p(n)
100	69065657	190569292	.3624175
200	1.397805.210533	3.972999.029388	. 3518262
220	7.443670.977177	21.248279.009367	. 3503187

Barnes, Savage 1995

n	g(n)	p(n)	g(n)/p(n)
100	69065657	190569292	.3624175
200	1.397805.210533	3.972999.029388	. 3518262
220	7.443670.977177	21.248279.009367	. 3503187
1000	7.812520.197904	24.061467.864032	.3246900
	.651287.725407.239942	.622473.692149.727991	

Concluding Remarks

Limiting factors:

memory to store intermediate results (18GB for n=1000)

time if you do not store intermediate results

References

- Sierksma, Hoogeveen: Seven Criteria for Integer Sequences being Graphic, J. Graph Theory, 1991.
- Barnes, Savage: A Recurrence for Counting Graphical Partitions, EJC, 1995.
- A. Kohnert: Dominance Order and Graphical Partitions, EJC, 2003, accepted.

Thank you very much for your attention.

