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1. Linear Codes

Linear [n, k, q] codes are k–dimensional subspaces C of the n–dimensional
vectorspace GF (q)n. They are described by a generator matrix, i.e. a matrix
whose rows are a basis of C.

Γ =





1 0 0 1
0 1 0 1
0 0 1 1



 ,

is a generator matrix of a [4, 3, 2]–code. The elements of the space are the
codewords. In the above example these are the 8 words:

0000, 0011, 0101, 0110, 1001, 1010, 1100, 1111.

We get these codewords if we multiply

vΓ

for all 8 vectors v ∈ GF (q)k. Codes are used for the correction of errors
during the transmission over a noisy channel, the number of entries where two
codewords differ is called the Hamming distance between these two codewords.
This is the number of errors which must be made during the transmission to
change one codeword into the other. The minimum distance d of a code is the
minimum of distance between all pairs of codewords. A code with minimum
distance d allows the correction of ⌊d/2⌋ errors.

Example

The following 4-word code allows the correction of 1 error.

d=3

d=3

d=3

d=3

010101 111111

101010000000

In the case of a linear code we know, that the difference (in the vector space)
is again a codeword, therefore the Hamming distance is the number of nonzero
entries in the difference codeword. The number of nozero entries is called the
weight of the codeword. For a linear code the minimum distance is equal to
the minimum weight of the nonzero codewords. A two-weight code is a code
where the nonzero codewords only have two different weights.

2. Strongly Regular Graphs

There is a connection between two-weight codes and graph theory given by the
following graph which can be defined for any linear two-weight code with the
two weights say w1 and w2. The vertices of the graph are the N codewords
and two vertices are connected if their Hamming distance is w1. In the above
8-word code for w1 = 2 this the following graph:

Example

1100

1010 0101

1001

0011

00001111

0110

This graph is a so-called strongly regular graph which has some nice proper-
ties, it is

1. regular, this means every vertex has the same number K of neighbors, and

2. the number of common neighbors for any pair of vertices depends only on
the question whether these two vertices are connected or not. This is de-
scribed by the two parameters λ(=common neighbors of adjacent vertices)
and µ (for non-adjacent vertices)

Above example has parameters 8, 6, 6, 6. Strongly regular graphs are very
interesting objects and people are searching for them as they know feasible
parameters N,K, λ, µ from algebra but sometimes there is no known method
for the construction of such a graph.

3. Finite Projective Geometry

The connection to the finite projective geometry is given by the generator
matrix. The columns of the generator matrix are points (=one-dimensional
subspaces of GF (q)k) in PG(k − 1, q). As long as we have different points
(= two columns of the generator matrix are linearily independent) we can
take the generator matrix as a set of points. Such codes are called projective

because of this correspondence. The interseting point is that the weight and
therefore also the minimum distance can be formulated in the context of the
geometry setting.

c = vΓ is a codeword of weight d
⇐⇒

the hyperplane orthogonal to v contains n − d of the the points given by Γ

Because of this property the construction of a linear code with given weights
can be seen as the selection of points in PG(k−1, q) with certain intersection
properties. For this construction we define the incidence matrix M between
points and hyperplanes in PG(k− 1, q). This square matrix has rows labeled
by the hyperplanes and columns labeled by points.

Mi,j :=
{

1 hyperplane i contains the point j
0 otherwise

Using this matrix the construction of a two-weight code with weights w1 and
w2 corresponds to a selection of columns, such that the row sum is n − w1
or n − w2. The corresponding system of points in PG(k − 1, q) is called an
(n, k, n − w1, n − w2) point set.

4. Diophantine System

We summarize the construction of a two-weight code with the following:

Theorem: There is an (n, k, n − w1, n − w2) point set in PG(k − 1, q) if and

only if there is a (0/1)−solution x of the Diophantine system of linear equations:

M

w2 − w1 0 . . . 0 0
0 . . . 0 0
... 0 w2 − w1 0 ...

0 0 . . . 0
0 0 . . . 0 w2 − w1

x =

n − w1
...

...

n − w1
1 . . . 1 0 . . . 0 n

The advantage of this description is that we have an effective method at hand
for the solution of such a Diophantine system of equations. It is an modified
version of the LLL-algorithm made available by Alfred Wassermann. Using
this we can solve systems with up to 400 columns.

5. Automorphisms

To construct codes in cases, where the size is too big, a common method is
to prescribe a group G of automorphisms, i.e. elements from GL(k, q) acting
on the points. In this case we condense the matrix M by adding up columns
which are elements of the same orbit under G.
After this first step of the reduction there are identical lines which correspond
to the hyperplanes in the orbit of the automorphism on the hyperplanes. This
allows the recution of rows. After there is again are square matrix, we denote
by MG. Above theorem becomes now:

Theorem: There is an (n, k, n−w1, n−w2) point set in PG(k − 1, q) with a

group G < GL(k, q) of automorphisms if and only if there is a (0/1)−solution

x of the Diophantine system of linear equations:

MG

w2 − w1 0 . . . 0 0
0 . . . 0 0
... 0 w2 − w1 0 ...

0 0 . . . 0
0 0 . . . 0 w2 − w1

x =

n − w1
...

...

n − w1
|ω1| . . . |ωm| 0 . . . 0 n

6. Binary Codes

We give a list of newly found binary two-weight codes together with the pa-
rameters of the corresponding strongly regular graphs.

n k q w1 w2 N K λ µ

70∗ 9 2 32(315) 40(196) 512 70 6 10
196∗ 9 2 96(441) 112(70) 512 196 60 84

198∗ 10 2 96(825) 112(198) 1024 198 22 42

234∗ 12 2 112(2808) 128(1287) 4096 234 2 14
270 12 2 128(2295) 144(2184) 4096 270 14 18
273 12 2 128(1911) 144(2184) 4096 273 20 18
455∗ 12 2 224(3640) 256(455) 4096 455 6 56
780 12 2 384(3315) 416(780) 4096 780 116 156
845 12 2 416(3250) 448(845) 4096 845 144 182
910 12 2 448(3185) 480(910) 4096 910 174 210
975 12 2 480(3120) 512(975) 4096 975 206 240
1040 12 2 512(3055) 544(1040) 4096 1040 240 272
1105 12 2 544(2990) 576(1105) 4096 1105 276 306
1170 12 2 576(2925) 608(1170) 4096 1170 314 342
1300 12 2 640(2795) 672(1300) 4096 1300 396 420
1365 12 2 672(2730) 704(1365) 4096 1365 440 462
1430 12 2 704(2665) 736(1430) 4096 1430 486 506
1495 12 2 736(2600) 768(1495) 4096 1495 534 552
1560 12 2 768(2535) 800(1560) 4096 1560 584 600
1625 12 2 800(2470) 832(1625) 4096 1625 636 650
1690 12 2 832(2405) 864(1690) 4096 1690 690 702
1755 12 2 864(2340) 896(1755) 4096 1755 746 756
1800∗ 12 2 896(3825) 960(270) 4096 1800 728 840
1820 12 2 896(2275) 928(1820) 4096 1820 804 812
1885 12 2 928(2210) 960(1885) 4096 1885 864 870
1950 12 2 960(2145) 992(1950) 4096 1950 926 930
2015 12 2 992(2080) 1024(2015) 4096 2015 990 992

7. Ternary Codes

n k q w1 w2 N K λ µ

328∗ 8 3 216(5904) 243(656) 6561 656 7 72
656 8 3 432(5248) 459(1312) 6561 1312 223 272
738 8 3 486(5087) 513(1476) 6561 1476 297 342
820 8 3 540(4920) 567(1640) 6561 1640 379 420
902 8 3 594(4756) 621(1804) 6561 1804 469 506
984 8 3 648(4592) 675(1968) 6561 1968 567 600
1066 8 3 702(4428) 729(2132) 6561 2132 673 702
1107 8 3 729(4346) 756(2214) 6561 2214 729 756
1148 8 3 756(4264) 783(2296) 6561 2296 787 812
1189 8 3 783(4182) 810(2378) 6561 2378 847 870
1230 8 3 810(4100) 837(2460) 6561 2460 909 930
1271 8 3 837(4018) 864(2542) 6561 2542 973 992
1312 8 3 864(3936) 891(2624) 6561 2624 1039 1056
1353 8 3 891(3854) 918(2706) 6561 2706 1107 1122
1394 8 3 918(3772) 945(2788) 6561 2788 1177 1190
1435 8 3 945(3690) 972(2870) 6561 2870 1249 1260
1476 8 3 972(3608) 999(2952) 6561 2952 1323 1332
1517 8 3 999(3526) 1026(3034) 6561 3034 1399 1406
1558 8 3 1026(3444) 1053(3116) 6561 3116 1477 1482
1599 8 3 1053(3362) 1080(3198) 6561 3198 1557 1560
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