Code details
best found code with parameters
q=23 k=3 n=461
minimum distance = 440
this is new optimal code
the previous bounds were -1/440
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 85 orbits of sizes:
1
|
2
|
4
|
2
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
4
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
4
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
4
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
4
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
4
|
The solution of the corresponding linear system of equations was found after less than 300 seconds:
1
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
1
|
20
|
21
|
21
|
21
|
20
|
19
|
19
|
19
|
19
|
19
|
19
|
19
|
19
|
19
|
19
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
21
|
21
|
20
|
21
|
21
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
21
|
21
|
20
|
20
|
20
|
21
|
21
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
21
|
21
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
20
|
21
|
21
|
21
|
21
|
21
|
21
|
21
|
21
|
21
|
0
|
This produces the following generator matrix
0
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
22
|
22
|
11
|
11
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
2
|
9
|
9
|
20
|
20
|
13
|
13
|
2
|
9
|
20
|
13
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
16
|
6
|
6
|
17
|
17
|
5
|
5
|
16
|
6
|
17
|
5
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
4
|
18
|
18
|
7
|
7
|
15
|
15
|
4
|
18
|
7
|
15
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
1
|
10
|
10
|
21
|
21
|
12
|
12
|
1
|
10
|
21
|
12
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
19
|
3
|
3
|
14
|
14
|
8
|
8
|
19
|
3
|
14
|
8
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
0
|
0
|
22
|
22
|
11
|
22
|
11
|
22
|
11
|
22
|
11
|
16
|
5
|
16
|
5
|
4
|
15
|
4
|
15
|
1
|
12
|
1
|
12
|
18
|
7
|
18
|
7
|
19
|
8
|
19
|
8
|
6
|
17
|
6
|
17
|
10
|
21
|
10
|
21
|
3
|
14
|
3
|
14
|
9
|
20
|
9
|
20
|
22
|
11
|
9
|
20
|
9
|
20
|
22
|
11
|
16
|
5
|
3
|
14
|
3
|
14
|
16
|
5
|
1
|
12
|
10
|
21
|
10
|
21
|
1
|
12
|
18
|
7
|
16
|
5
|
16
|
5
|
18
|
7
|
19
|
8
|
6
|
17
|
6
|
17
|
19
|
8
|
6
|
17
|
4
|
15
|
4
|
15
|
6
|
17
|
10
|
21
|
19
|
8
|
19
|
8
|
10
|
21
|
3
|
14
|
1
|
12
|
1
|
12
|
3
|
14
|
9
|
20
|
18
|
7
|
18
|
7
|
9
|
20
|
0
|
0
|
0
|
0
|
22
|
11
|
6
|
17
|
6
|
17
|
22
|
11
|
16
|
5
|
22
|
11
|
22
|
11
|
16
|
5
|
4
|
15
|
10
|
21
|
10
|
21
|
4
|
15
|
1
|
12
|
18
|
7
|
18
|
7
|
1
|
12
|
19
|
8
|
3
|
14
|
3
|
14
|
19
|
8
|
6
|
17
|
1
|
12
|
1
|
12
|
6
|
17
|
10
|
21
|
16
|
5
|
16
|
5
|
10
|
21
|
3
|
14
|
9
|
20
|
9
|
20
|
3
|
14
|
9
|
20
|
4
|
15
|
4
|
15
|
9
|
20
|
0
|
0
|
0
|
0
|
22
|
11
|
18
|
7
|
18
|
7
|
22
|
11
|
16
|
5
|
1
|
12
|
1
|
12
|
16
|
5
|
4
|
15
|
22
|
11
|
22
|
11
|
4
|
15
|
1
|
12
|
19
|
8
|
19
|
8
|
1
|
12
|
18
|
7
|
3
|
14
|
3
|
14
|
18
|
7
|
19
|
8
|
4
|
15
|
4
|
15
|
19
|
8
|
10
|
21
|
6
|
17
|
6
|
17
|
10
|
21
|
3
|
14
|
10
|
21
|
10
|
21
|
3
|
14
|
9
|
20
|
16
|
5
|
16
|
5
|
9
|
20
|
0
|
0
|
0
|
0
|
22
|
11
|
10
|
21
|
10
|
21
|
22
|
11
|
16
|
5
|
4
|
15
|
4
|
15
|
16
|
5
|
4
|
15
|
3
|
14
|
3
|
14
|
4
|
15
|
1
|
12
|
22
|
11
|
22
|
11
|
1
|
12
|
18
|
7
|
6
|
17
|
6
|
17
|
18
|
7
|
19
|
8
|
18
|
7
|
18
|
7
|
19
|
8
|
6
|
17
|
16
|
5
|
16
|
5
|
6
|
17
|
10
|
21
|
9
|
20
|
9
|
20
|
10
|
21
|
9
|
20
|
19
|
8
|
19
|
8
|
9
|
20
|
0
|
0
|
0
|
0
|
22
|
11
|
3
|
14
|
3
|
14
|
22
|
11
|
16
|
5
|
19
|
8
|
19
|
8
|
16
|
5
|
4
|
15
|
18
|
7
|
18
|
7
|
4
|
15
|
1
|
12
|
4
|
15
|
4
|
15
|
1
|
12
|
18
|
7
|
10
|
21
|
10
|
21
|
18
|
7
|
19
|
8
|
22
|
11
|
22
|
11
|
19
|
8
|
6
|
17
|
9
|
20
|
9
|
20
|
6
|
17
|
3
|
14
|
6
|
17
|
6
|
17
|
3
|
14
|
9
|
20
|
1
|
12
|
1
|
12
|
9
|
20
|
0
|
0
|
0
|
0
|
16
|
5
|
16
|
5
|
4
|
15
|
4
|
15
|
1
|
12
|
1
|
12
|
18
|
7
|
18
|
7
|
19
|
8
|
19
|
8
|
6
|
17
|
6
|
17
|
10
|
21
|
10
|
21
|
3
|
14
|
3
|
14
|
9
|
20
|
9
|
20
|
Which is a code with the following weight distribution
1y461+2728x440y21+8470x441y20+880x442y19+88x461