Code details
best found code with parameters
q=23 k=3 n=277
minimum distance = 264
this is new optimal code
the previous bounds were -1/264
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 37 orbits of sizes:
12
|
24
|
24
|
12
|
24
|
24
|
12
|
24
|
24
|
24
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
24
|
12
|
12
|
12
|
24
|
12
|
24
|
24
|
12
|
6
|
12
|
12
|
6
|
12
|
1
|
The solution of the corresponding linear system of equations was found after less than 300 seconds:
1
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
13
|
13
|
12
|
12
|
12
|
13
|
13
|
13
|
12
|
12
|
13
|
12
|
13
|
12
|
12
|
13
|
12
|
12
|
13
|
12
|
13
|
12
|
13
|
12
|
13
|
13
|
13
|
13
|
12
|
1
|
12
|
1
|
13
|
12
|
13
|
13
|
12
|
This produces the following generator matrix
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
22
|
0
|
22
|
0
|
19
|
6
|
10
|
3
|
14
|
8
|
7
|
12
|
15
|
22
|
22
|
22
|
22
|
16
|
16
|
1
|
1
|
18
|
18
|
10
|
10
|
9
|
9
|
20
|
17
|
8
|
8
|
12
|
12
|
13
|
13
|
11
|
11
|
0
|
0
|
2
|
2
|
4
|
4
|
10
|
10
|
9
|
9
|
14
|
14
|
21
|
21
|
8
|
8
|
7
|
7
|
15
|
15
|
5
|
5
|
11
|
11
|
22
|
22
|
0
|
0
|
19
|
19
|
6
|
6
|
9
|
9
|
20
|
20
|
14
|
14
|
17
|
17
|
7
|
7
|
12
|
12
|
15
|
15
|
11
|
11
|
22
|
2
|
4
|
1
|
18
|
9
|
20
|
21
|
17
|
5
|
13
|
11
|
22
|
22
|
22
|
16
|
16
|
4
|
9
|
12
|
12
|
5
|
13
|
11
|
16
|
16
|
1
|
18
|
19
|
19
|
6
|
6
|
9
|
20
|
17
|
11
|
1
|
18
|
3
|
3
|
9
|
20
|
14
|
14
|
17
|
15
|
15
|
11
|
22
|
2
|
4
|
1
|
18
|
9
|
20
|
21
|
17
|
5
|
13
|
11
|
0
|
0
|
22
|
4
|
3
|
3
|
9
|
7
|
7
|
5
|
13
|
11
|
22
|
4
|
10
|
10
|
14
|
14
|
8
|
8
|
15
|
15
|
5
|
13
|
0
|
22
|
4
|
19
|
19
|
6
|
6
|
3
|
3
|
7
|
5
|
13
|
22
|
2
|
1
|
18
|
19
|
19
|
6
|
6
|
3
|
3
|
21
|
13
|
22
|
22
|
22
|
22
|
2
|
16
|
16
|
4
|
4
|
20
|
20
|
14
|
14
|
21
|
17
|
17
|
12
|
12
|
15
|
15
|
5
|
5
|
13
|
13
|
0
|
0
|
22
|
2
|
16
|
16
|
1
|
18
|
21
|
7
|
7
|
13
|
22
|
22
|
2
|
2
|
16
|
16
|
4
|
4
|
1
|
18
|
19
|
19
|
6
|
6
|
10
|
10
|
21
|
21
|
8
|
8
|
12
|
12
|
5
|
5
|
22
|
0
|
0
|
2
|
1
|
18
|
20
|
21
|
17
|
7
|
7
|
12
|
2
|
1
|
18
|
10
|
10
|
3
|
3
|
20
|
21
|
17
|
8
|
8
|
3
|
22
|
0
|
12
|
10
|
7
|
19
|
14
|
3
|
15
|
6
|
0
|
8
|
1
|
21
|
10
|
11
|
1
|
12
|
16
|
20
|
8
|
12
|
22
|
13
|
8
|
13
|
1
|
11
|
18
|
9
|
16
|
18
|
10
|
9
|
22
|
17
|
10
|
8
|
7
|
11
|
14
|
7
|
0
|
15
|
21
|
15
|
4
|
5
|
9
|
5
|
0
|
11
|
2
|
4
|
10
|
9
|
14
|
21
|
2
|
8
|
2
|
20
|
20
|
17
|
17
|
12
|
9
|
14
|
6
|
20
|
0
|
9
|
6
|
7
|
0
|
19
|
14
|
11
|
19
|
15
|
12
|
11
|
7
|
15
|
21
|
2
|
4
|
17
|
9
|
18
|
13
|
22
|
1
|
11
|
20
|
5
|
17
|
5
|
12
|
16
|
5
|
9
|
4
|
22
|
12
|
16
|
11
|
13
|
6
|
17
|
19
|
11
|
1
|
19
|
16
|
20
|
9
|
6
|
16
|
18
|
11
|
3
|
18
|
17
|
14
|
15
|
9
|
15
|
3
|
20
|
14
|
1
|
2
|
22
|
11
|
13
|
5
|
17
|
21
|
20
|
9
|
18
|
1
|
4
|
9
|
11
|
4
|
22
|
7
|
13
|
0
|
3
|
5
|
7
|
3
|
0
|
14
|
8
|
14
|
8
|
22
|
10
|
4
|
10
|
15
|
5
|
15
|
13
|
3
|
6
|
6
|
3
|
7
|
22
|
4
|
0
|
19
|
19
|
13
|
5
|
19
|
3
|
21
|
13
|
22
|
6
|
19
|
3
|
2
|
6
|
1
|
18
|
19
|
3
|
17
|
5
|
16
|
2
|
13
|
15
|
13
|
12
|
5
|
21
|
12
|
14
|
22
|
15
|
20
|
14
|
4
|
17
|
22
|
20
|
16
|
4
|
22
|
13
|
0
|
1
|
18
|
7
|
2
|
16
|
21
|
16
|
7
|
0
|
9
|
13
|
18
|
6
|
10
|
21
|
21
|
12
|
10
|
2
|
8
|
5
|
2
|
5
|
16
|
1
|
16
|
4
|
19
|
12
|
4
|
8
|
19
|
6
|
22
|
0
|
7
|
20
|
7
|
21
|
2
|
18
|
12
|
0
|
1
|
17
|
10
|
3
|
17
|
2
|
3
|
1
|
10
|
8
|
8
|
18
|
20
|
21
|
3
|
Which is a code with the following weight distribution
1y277+6072x264y13+5566x265y12+528x276y1