Code details
best found code with parameters
q=19 k=3 n=68
minimum distance = 63
this is new optimal code
the previous bounds were -1/63
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 39 orbits of sizes:
3
|
6
|
4
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
6
|
12
|
12
|
12
|
12
|
12
|
6
|
12
|
12
|
6
|
12
|
12
|
12
|
12
|
6
|
12
|
6
|
4
|
6
|
4
|
6
|
6
|
The solution of the corresponding linear system of equations was found after less than 100 seconds:
0
|
0
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
0
|
1
|
0
|
0
|
4
|
4
|
2
|
4
|
4
|
4
|
4
|
5
|
2
|
5
|
0
|
5
|
5
|
0
|
5
|
4
|
4
|
0
|
5
|
2
|
4
|
5
|
4
|
5
|
5
|
2
|
4
|
0
|
4
|
4
|
5
|
4
|
5
|
5
|
1
|
4
|
1
|
4
|
0
|
This produces the following generator matrix
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
0
|
0
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
0
|
0
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
2
|
2
|
16
|
16
|
7
|
7
|
11
|
11
|
9
|
9
|
18
|
18
|
13
|
13
|
14
|
14
|
5
|
5
|
4
|
4
|
9
|
9
|
13
|
13
|
2
|
2
|
3
|
3
|
12
|
12
|
11
|
11
|
4
|
4
|
18
|
18
|
0
|
0
|
13
|
4
|
16
|
16
|
14
|
14
|
6
|
6
|
15
|
15
|
5
|
5
|
7
|
7
|
18
|
18
|
0
|
0
|
14
|
5
|
6
|
6
|
15
|
15
|
3
|
3
|
12
|
12
|
16
|
7
|
2
|
11
|
18
|
9
|
18
|
9
|
2
|
11
|
16
|
7
|
14
|
5
|
13
|
4
|
18
|
9
|
18
|
9
|
13
|
4
|
14
|
5
|
16
|
7
|
6
|
15
|
14
|
5
|
14
|
5
|
6
|
15
|
16
|
7
|
13
|
4
|
14
|
5
|
0
|
0
|
13
|
4
|
3
|
12
|
2
|
11
|
2
|
11
|
3
|
12
|
13
|
4
|
14
|
5
|
13
|
4
|
0
|
0
|
3
|
12
|
3
|
12
|
6
|
15
|
6
|
15
|
Which is a code with the following weight distribution
1y68+2376x63y5+2754x64y4+720x66y2+144x67y1+864x68