Code details
best found code with parameters
q=19 k=3 n=191
minimum distance = 180
this is new optimal code
the previous bounds were -1/180
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 33 orbits of sizes:
1
|
2
|
18
|
18
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
9
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
The solution of the corresponding linear system of equations was found after less than 500 seconds:
0
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
1
|
0
|
0
|
0
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
1
|
1
|
11
|
1
|
11
|
11
|
11
|
11
|
10
|
10
|
10
|
10
|
11
|
11
|
10
|
11
|
11
|
10
|
11
|
11
|
10
|
10
|
10
|
10
|
11
|
10
|
11
|
11
|
10
|
1
|
11
|
11
|
10
|
10
|
10
|
This produces the following generator matrix
0
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
18
|
0
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
18
|
2
|
16
|
14
|
6
|
8
|
12
|
4
|
10
|
1
|
13
|
3
|
17
|
15
|
5
|
7
|
11
|
9
|
1
|
1
|
13
|
13
|
3
|
3
|
17
|
17
|
15
|
15
|
5
|
5
|
7
|
7
|
11
|
11
|
9
|
9
|
1
|
1
|
13
|
13
|
3
|
3
|
17
|
17
|
15
|
15
|
5
|
5
|
7
|
7
|
11
|
11
|
9
|
9
|
1
|
1
|
13
|
13
|
3
|
3
|
17
|
17
|
15
|
15
|
5
|
5
|
7
|
7
|
11
|
11
|
9
|
9
|
1
|
1
|
13
|
13
|
3
|
3
|
17
|
17
|
15
|
15
|
5
|
5
|
7
|
7
|
11
|
11
|
9
|
9
|
1
|
1
|
13
|
13
|
3
|
3
|
17
|
17
|
15
|
15
|
5
|
5
|
7
|
7
|
11
|
11
|
9
|
9
|
0
|
0
|
4
|
14
|
12
|
2
|
16
|
8
|
10
|
6
|
18
|
5
|
15
|
13
|
3
|
17
|
9
|
11
|
7
|
1
|
17
|
9
|
7
|
15
|
11
|
3
|
5
|
1
|
13
|
2
|
12
|
10
|
18
|
14
|
6
|
8
|
4
|
16
|
12
|
4
|
2
|
10
|
6
|
16
|
18
|
14
|
8
|
3
|
13
|
11
|
1
|
15
|
7
|
9
|
5
|
17
|
11
|
3
|
1
|
9
|
5
|
15
|
17
|
13
|
7
|
8
|
18
|
16
|
6
|
2
|
12
|
14
|
10
|
4
|
14
|
6
|
4
|
12
|
8
|
18
|
2
|
16
|
10
|
13
|
5
|
3
|
11
|
7
|
17
|
1
|
15
|
9
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
14
|
5
|
2
|
11
|
6
|
15
|
13
|
4
|
3
|
12
|
16
|
7
|
8
|
17
|
1
|
10
|
18
|
9
|
6
|
15
|
3
|
12
|
16
|
7
|
14
|
5
|
13
|
4
|
8
|
17
|
18
|
9
|
2
|
11
|
1
|
10
|
1
|
10
|
16
|
7
|
2
|
11
|
18
|
9
|
8
|
17
|
3
|
12
|
13
|
4
|
6
|
15
|
14
|
5
|
8
|
17
|
14
|
5
|
18
|
9
|
16
|
7
|
6
|
15
|
1
|
10
|
2
|
11
|
13
|
4
|
3
|
12
|
13
|
4
|
1
|
10
|
14
|
5
|
3
|
12
|
2
|
11
|
6
|
15
|
16
|
7
|
18
|
9
|
8
|
17
|
Which is a code with the following weight distribution
1y191+3420x180y11+3078x181y10+360x190y1