Code details

best found code with parameters
q=17 k=3 n=28
minimum distance = 25

this is new optimal code


the previous bounds were -1/25
this is a projective code


We used the prescribed group of automorphisms with the following generators


0 0 16
16 0 0
0 16 0

This group makes 103 orbits of sizes:

3 3 1 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3


The solution of the corresponding linear system of equations was found after less than 100 seconds:

0 0 1 1 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1 1 3 3 0 0 0 0 1 3 3 3 2 3 2 3 1 0 3 0 1 3 1 2 0 0 1 1 2 3 3 3 2 1 3 3 3 3 2 2 1 0 0 2 2 1 0 3 3 0 3 2 1 3 1 3 3 0 1 2 1 0 3 3 0 3 1 1 3 2 3 2 3 3 1 3 3 0 2 1 3 1 3 1 0 2 2 3 3 3 1 2 1 1 2 0 0 1 1 0 0 0 0 0 0


This produces the following generator matrix

16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 0 16 16 16 16 16 0 16 16 0 16 16
16 16 14 2 2 6 8 11 13 8 11 13 8 5 5 6 16 0 2 16 5 11 16 0 1 16 0 14
16 14 16 2 10 8 14 3 8 5 8 5 3 11 10 11 2 14 0 11 5 16 1 15 0 14 2 0



Which is a code with the following weight distribution
1y28+1728x25y3+864x26y2+1152x27y1+1168x28