Code details
best found code with parameters
q=17 k=3 n=219
minimum distance = 205
this is new optimal code
the previous bounds were -1/205
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 31 orbits of sizes:
3
|
6
|
4
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
6
|
12
|
12
|
12
|
12
|
6
|
12
|
12
|
12
|
6
|
6
|
12
|
6
|
12
|
6
|
6
|
The solution of the corresponding linear system of equations was found after less than 100 seconds:
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
1
|
1
|
1
|
0
|
1
|
1
|
0
|
1
|
14
|
13
|
0
|
14
|
14
|
14
|
13
|
14
|
14
|
13
|
12
|
14
|
13
|
14
|
11
|
12
|
11
|
13
|
13
|
13
|
10
|
13
|
10
|
13
|
14
|
13
|
14
|
14
|
13
|
14
|
14
|
This produces the following generator matrix
0
|
0
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
0
|
0
|
16
|
16
|
16
|
16
|
0
|
16
|
0
|
16
|
16
|
1
|
1
|
15
|
15
|
7
|
7
|
9
|
9
|
8
|
8
|
16
|
16
|
12
|
12
|
12
|
12
|
4
|
4
|
4
|
4
|
8
|
8
|
16
|
16
|
5
|
5
|
11
|
11
|
3
|
3
|
13
|
13
|
8
|
8
|
16
|
16
|
1
|
1
|
15
|
15
|
7
|
7
|
9
|
9
|
8
|
8
|
16
|
16
|
5
|
5
|
11
|
11
|
3
|
3
|
13
|
13
|
8
|
8
|
16
|
16
|
14
|
14
|
10
|
10
|
2
|
2
|
6
|
6
|
8
|
8
|
14
|
14
|
14
|
14
|
12
|
12
|
4
|
4
|
6
|
6
|
6
|
6
|
14
|
14
|
15
|
15
|
11
|
11
|
3
|
3
|
7
|
7
|
6
|
6
|
14
|
14
|
1
|
1
|
1
|
1
|
9
|
9
|
9
|
9
|
6
|
6
|
14
|
14
|
5
|
5
|
5
|
5
|
13
|
13
|
13
|
13
|
6
|
6
|
16
|
16
|
0
|
0
|
14
|
6
|
1
|
1
|
12
|
12
|
11
|
11
|
3
|
3
|
4
|
4
|
9
|
9
|
1
|
1
|
5
|
5
|
10
|
10
|
2
|
2
|
13
|
13
|
9
|
9
|
16
|
16
|
0
|
0
|
1
|
9
|
12
|
12
|
10
|
10
|
10
|
10
|
2
|
2
|
2
|
2
|
4
|
4
|
12
|
12
|
5
|
5
|
15
|
15
|
7
|
7
|
13
|
13
|
4
|
4
|
16
|
16
|
0
|
0
|
12
|
4
|
16
|
16
|
0
|
0
|
5
|
13
|
16
|
16
|
0
|
0
|
15
|
7
|
11
|
11
|
11
|
11
|
10
|
10
|
2
|
2
|
3
|
3
|
3
|
3
|
16
|
16
|
0
|
0
|
10
|
2
|
16
|
0
|
0
|
1
|
9
|
16
|
8
|
15
|
7
|
15
|
7
|
16
|
8
|
1
|
9
|
12
|
4
|
16
|
12
|
4
|
8
|
16
|
12
|
4
|
8
|
12
|
4
|
5
|
13
|
16
|
8
|
11
|
3
|
11
|
3
|
16
|
8
|
5
|
13
|
15
|
7
|
1
|
9
|
16
|
8
|
16
|
8
|
1
|
9
|
15
|
7
|
11
|
3
|
5
|
13
|
16
|
8
|
16
|
8
|
5
|
13
|
11
|
3
|
10
|
2
|
14
|
6
|
16
|
8
|
16
|
8
|
14
|
6
|
10
|
2
|
12
|
10
|
2
|
4
|
10
|
2
|
10
|
2
|
12
|
10
|
2
|
4
|
5
|
13
|
10
|
2
|
1
|
9
|
1
|
9
|
10
|
2
|
5
|
13
|
15
|
7
|
15
|
10
|
2
|
7
|
15
|
10
|
2
|
7
|
15
|
7
|
11
|
3
|
11
|
10
|
2
|
3
|
11
|
10
|
2
|
3
|
11
|
3
|
14
|
6
|
10
|
2
|
0
|
0
|
5
|
13
|
15
|
7
|
12
|
4
|
12
|
4
|
15
|
7
|
5
|
13
|
11
|
3
|
14
|
6
|
15
|
7
|
15
|
7
|
14
|
6
|
11
|
3
|
1
|
9
|
15
|
7
|
0
|
0
|
14
|
6
|
14
|
12
|
4
|
6
|
14
|
12
|
4
|
6
|
14
|
6
|
11
|
3
|
1
|
9
|
12
|
4
|
12
|
4
|
1
|
9
|
11
|
3
|
12
|
4
|
12
|
4
|
0
|
0
|
5
|
13
|
11
|
3
|
0
|
0
|
15
|
7
|
1
|
9
|
0
|
0
|
14
|
5
|
13
|
6
|
5
|
13
|
5
|
13
|
14
|
5
|
13
|
6
|
10
|
2
|
14
|
6
|
0
|
0
|
Which is a code with the following weight distribution
1y219+1968x205y14+1920x206y13+288x207y12+384x208y11+288x209y10+64x219