Code details
best found code with parameters
q=17 k=3 n=182
minimum distance = 170
this is new optimal code
the previous bounds were -1/170
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 47 orbits of sizes:
1
|
1
|
2
|
1
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
8
|
2
|
2
|
2
|
2
|
2
|
2
|
2
|
The solution of the corresponding linear system of equations was found after less than 50000 seconds:
1
|
1
|
0
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
1
|
0
|
1
|
1
|
1
|
0
|
0
|
1
|
0
|
0
|
0
|
1
|
9
|
9
|
12
|
6
|
11
|
11
|
12
|
11
|
12
|
12
|
11
|
12
|
12
|
10
|
7
|
11
|
8
|
12
|
10
|
5
|
11
|
6
|
10
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
6
|
11
|
8
|
11
|
12
|
12
|
9
|
12
|
9
|
4
|
12
|
12
|
12
|
This produces the following generator matrix
0
|
0
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
16
|
0
|
0
|
0
|
0
|
0
|
16
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
16
|
14
|
12
|
10
|
2
|
4
|
6
|
8
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
16
|
16
|
16
|
16
|
16
|
0
|
8
|
14
|
4
|
10
|
2
|
12
|
6
|
16
|
6
|
12
|
2
|
8
|
16
|
10
|
4
|
14
|
9
|
15
|
5
|
11
|
3
|
13
|
7
|
1
|
4
|
10
|
16
|
6
|
14
|
8
|
2
|
12
|
13
|
3
|
9
|
15
|
7
|
1
|
11
|
5
|
10
|
16
|
6
|
12
|
4
|
14
|
8
|
2
|
11
|
1
|
7
|
13
|
5
|
15
|
9
|
3
|
15
|
5
|
11
|
1
|
9
|
3
|
13
|
7
|
5
|
11
|
1
|
7
|
15
|
9
|
3
|
13
|
14
|
4
|
10
|
16
|
8
|
2
|
12
|
6
|
16
|
4
|
6
|
2
|
10
|
14
|
12
|
8
|
14
|
2
|
4
|
16
|
8
|
12
|
10
|
6
|
1
|
5
|
7
|
3
|
11
|
15
|
13
|
9
|
15
|
3
|
5
|
1
|
9
|
13
|
11
|
7
|
11
|
15
|
1
|
13
|
5
|
9
|
7
|
3
|
10
|
14
|
16
|
12
|
4
|
8
|
6
|
2
|
2
|
6
|
8
|
4
|
12
|
16
|
14
|
10
|
13
|
1
|
3
|
15
|
7
|
11
|
9
|
5
|
9
|
13
|
15
|
11
|
3
|
7
|
5
|
1
|
8
|
12
|
14
|
10
|
2
|
6
|
4
|
16
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
0
|
1
|
5
|
15
|
11
|
3
|
7
|
13
|
9
|
12
|
4
|
10
|
2
|
Which is a code with the following weight distribution
1y182+2592x170y12+1024x171y11+384x172y10+96x173y9+256x174y8+128x175y7+272x176y6+128x177y5+32x178y4