Code details

best found code with parameters
q=17 k=3 n=137
minimum distance = 128

this is new optimal code


the previous bounds were -1/128
this is a projective code


We used the prescribed group of automorphisms with the following generators


16 0 0
0 0 16
0 16 0

16 0 0
0 0 16
0 16 0

16 0 0
0 16 0
0 0 16

13 7 13
0 9 11
0 0 11

This group makes 7 orbits of sizes:

68 68 17 68 68 17 1


The solution of the corresponding linear system of equations was found after less than 100 seconds:

0 1 0 0 1 0 1 9 9 8 9 8 0 1


This produces the following generator matrix

0 0 0 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 0 0 0 0 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
16 16 16 16 16 0 0 0 0 16 16 16 16 16 1 1 12 12 5 5 15 15 15 15 15 11 11 11 11 10 10 10 10 2 2 2 2 2 3 3 3 3 3 7 7 13 13 13 13 13 13 4 4 4 4 4 4 6 6 6 6 6 8 8 8 8 8 8 16 16 16 16 0 0 0 0 16 16 16 16 1 1 1 1 1 1 12 12 12 12 12 12 5 5 5 5 5 5 15 15 15 15 11 11 11 11 11 10 10 10 10 10 2 2 2 2 3 3 3 3 7 7 7 7 7 7 13 13 4 4 6 6 6 6 8 8 0
16 12 7 4 9 1 11 3 8 5 10 2 13 4 0 2 13 6 16 2 15 11 13 6 8 0 15 4 6 16 10 4 8 16 1 5 3 13 0 2 3 4 6 13 4 16 12 15 2 7 8 16 11 10 3 7 8 12 15 11 3 8 0 15 10 13 4 6 1 15 3 13 16 12 10 13 0 16 15 3 5 15 11 10 3 6 0 5 15 11 3 8 1 12 5 11 10 7 16 1 12 4 1 12 5 2 7 0 1 5 7 6 11 7 4 8 16 1 12 13 5 11 10 2 7 6 0 3 15 2 1 10 7 6 12 2 0



Which is a code with the following weight distribution
1y137+2448x128y9+2176x129y8+16x136y1+272x137