Code details

best found code with parameters
q=16 k=3 n=142
minimum distance = 132

this is new optimal code


the previous bounds were -1/132
this is a projective code


We used the prescribed group of automorphisms with the following generators


15 0 0
0 0 15
0 15 0

9 0 0
0 6 0
0 0 12

This group makes 37 orbits of sizes:

2 10 5 1 10 5 10 10 10 5 10 10 10 5 10 5 5 5 10 10 10 10 10 5 10 10 5 5 10 5 5 10 10 5 5 5 5


The solution of the corresponding linear system of equations was found after less than 500 seconds:

1 0 0 0 1 0 0 1 0 0 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 0 1 1 0 1 1 1 1 6 8 10 2 10 8 9 10 9 10 9 9 9 8 9 8 8 8 0 10 10 9 10 10 10 10 10 10 9 10 6 10 10 8 8 8 10


This produces the following generator matrix

0 0 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
0 15 0 0 0 0 0 1 4 7 13 10 8 14 5 9 2 3 11 6 12 15 8 14 5 9 2 3 11 6 12 15 1 4 7 9 13 10 3 6 12 15 9 3 6 12 15 9 3 6 12 15 9 3 6 12 15 1 4 7 9 13 10 3 6 12 15 8 14 5 9 2 3 11 6 12 15 8 14 5 9 2 3 11 6 12 15 8 14 5 2 11 8 14 5 2 11 1 8 14 4 5 7 2 13 10 11 8 14 5 2 11 1 8 14 4 5 7 2 13 10 11 1 4 7 13 10 1 4 7 13 10 1 4 7 13 10 1 4 7 13 10
15 0 1 4 7 13 10 0 0 0 0 0 12 6 15 11 3 2 9 14 8 5 9 3 12 8 15 14 6 11 5 2 12 9 6 4 15 3 10 7 1 13 12 3 15 9 6 3 9 6 15 12 6 12 9 3 15 3 15 12 10 6 9 1 13 7 4 6 15 9 5 12 11 3 8 2 14 15 9 3 14 6 5 12 2 11 8 5 14 8 11 2 8 2 11 14 5 14 7 1 11 10 8 13 2 5 4 11 5 14 2 8 11 4 13 8 7 5 10 14 2 1 4 1 13 7 10 7 4 1 10 13 1 13 10 4 7 13 10 7 1 4



Which is a code with the following weight distribution
1y142+1875x132y10+1200x133y9+750x134y8+105x136y6+15x140y2+150x142