Code details

best found code with parameters
q=13 k=3 n=92
minimum distance = 84

this is new optimal code


the previous bounds were -1/84
this is a projective code


We used the prescribed group of automorphisms with the following generators


7 7 2
7 6 5
9 8 11

This group makes 15 orbits of sizes:

14 14 14 7 14 14 14 14 14 7 14 14 14 14 1


The solution of the corresponding linear system of equations was found after less than 10 seconds:

0 1 0 1 1 1 1 0 0 0 1 0 0 1 1 8 1 8 7 8 7 7 7 8 7 7 8 7 8 8


This produces the following generator matrix

12 12 12 12 12 12 12 12 12 12 12 12 12 12 0 12 12 12 12 12 12 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 1 1 4 4 9 9 11 11 10 10 6 6 12 0 1 4 8 10 6 12 12 0 0 2 2 9 9 8 8 10 7 7 6 1 1 4 4 2 2 5 3 10 10 7 7 6 6 12 12 12 2 2 11 8 8 10 10 7 7 6 6 0 0 12 12 1 4 2 2 9 9 11 11 7 7 12 12 0 0 12 12 1 1 4 4 11 11 8 8 9
5 3 11 10 8 7 1 7 8 10 11 3 1 5 12 6 12 1 3 8 7 1 7 2 11 9 5 9 5 2 11 6 1 8 6 2 8 0 12 0 1 1 4 4 9 2 9 12 8 0 6 9 8 7 1 4 6 0 12 5 11 2 3 0 7 2 7 4 9 2 10 3 10 9 3 0 4 4 11 12 10 12 11 5 6 4 6 0 4 0 10 12



Which is a code with the following weight distribution
1y92+1092x84y8+936x85y7+168x91y1