Code details
best found code with parameters
q=13 k=3 n=92
minimum distance = 84
this is new optimal code
the previous bounds were -1/84
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 15 orbits of sizes:
14
|
14
|
14
|
7
|
14
|
14
|
14
|
14
|
14
|
7
|
14
|
14
|
14
|
14
|
1
|
The solution of the corresponding linear system of equations was found after less than 10 seconds:
0
|
1
|
0
|
1
|
1
|
1
|
1
|
0
|
0
|
0
|
1
|
0
|
0
|
1
|
1
|
8
|
1
|
8
|
7
|
8
|
7
|
7
|
7
|
8
|
7
|
7
|
8
|
7
|
8
|
8
|
This produces the following generator matrix
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
0
|
12
|
12
|
12
|
12
|
12
|
12
|
0
|
0
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
0
|
0
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
0
|
0
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
12
|
1
|
1
|
4
|
4
|
9
|
9
|
11
|
11
|
10
|
10
|
6
|
6
|
12
|
0
|
1
|
4
|
8
|
10
|
6
|
12
|
12
|
0
|
0
|
2
|
2
|
9
|
9
|
8
|
8
|
10
|
7
|
7
|
6
|
1
|
1
|
4
|
4
|
2
|
2
|
5
|
3
|
10
|
10
|
7
|
7
|
6
|
6
|
12
|
12
|
12
|
2
|
2
|
11
|
8
|
8
|
10
|
10
|
7
|
7
|
6
|
6
|
0
|
0
|
12
|
12
|
1
|
4
|
2
|
2
|
9
|
9
|
11
|
11
|
7
|
7
|
12
|
12
|
0
|
0
|
12
|
12
|
1
|
1
|
4
|
4
|
11
|
11
|
8
|
8
|
9
|
5
|
3
|
11
|
10
|
8
|
7
|
1
|
7
|
8
|
10
|
11
|
3
|
1
|
5
|
12
|
6
|
12
|
1
|
3
|
8
|
7
|
1
|
7
|
2
|
11
|
9
|
5
|
9
|
5
|
2
|
11
|
6
|
1
|
8
|
6
|
2
|
8
|
0
|
12
|
0
|
1
|
1
|
4
|
4
|
9
|
2
|
9
|
12
|
8
|
0
|
6
|
9
|
8
|
7
|
1
|
4
|
6
|
0
|
12
|
5
|
11
|
2
|
3
|
0
|
7
|
2
|
7
|
4
|
9
|
2
|
10
|
3
|
10
|
9
|
3
|
0
|
4
|
4
|
11
|
12
|
10
|
12
|
11
|
5
|
6
|
4
|
6
|
0
|
4
|
0
|
10
|
12
|
Which is a code with the following weight distribution
1y92+1092x84y8+936x85y7+168x91y1