Code details

best found code with parameters
q=13 k=3 n=132
minimum distance = 121

this is new optimal code


the previous bounds were -1/121
this is a projective code


We used the prescribed group of automorphisms with the following generators


0 0 12
12 0 0
0 12 0

8 0 0
0 12 0
0 0 4

This group makes 23 orbits of sizes:

3 9 3 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 3 3 9


The solution of the corresponding linear system of equations was found after less than 10 seconds:

0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 0 1 1 0 1 1 6 10 6 11 10 10 11 11 11 10 11 11 5 11 11 8 9 11 11 11 11 11 11


This produces the following generator matrix

12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 0 0 0 12 12 12 12 12 12 12 12 12 0 0 0 12 12 12 12 12 12
12 4 8 12 1 4 9 5 11 3 8 7 12 1 4 9 5 11 3 8 7 12 1 4 9 5 11 3 8 7 2 11 11 3 3 10 7 7 6 1 1 2 9 9 5 5 10 6 1 1 2 9 9 5 5 10 6 12 4 2 2 8 10 10 6 6 12 4 2 2 8 10 10 6 6 1 1 2 9 9 5 5 10 6 2 11 11 3 3 10 7 7 6 2 11 11 3 3 10 7 7 6 12 1 4 9 5 11 3 8 7 12 12 12 0 0 0 11 3 7 12 4 8 12 12 12 0 0 0 1 9 5
8 4 12 9 8 5 12 4 7 3 1 11 1 12 9 4 8 11 7 5 3 3 5 11 9 1 4 12 7 8 9 9 6 2 5 1 1 10 5 10 7 3 2 11 3 6 7 11 2 11 7 3 6 10 7 11 3 2 10 12 6 6 4 10 2 8 10 6 2 8 2 12 6 4 10 3 6 11 10 7 2 11 3 7 1 1 10 9 6 5 2 5 9 5 2 5 1 10 9 9 6 1 7 9 3 1 5 8 4 11 12 11 3 7 1 9 5 0 0 0 12 8 4 1 9 5 11 3 7 0 0 0



Which is a code with the following weight distribution
1y132+1368x121y11+432x122y10+108x123y9+108x124y8+72x126y6+108x127y5