Code details

best found code with parameters
q=13 k=3 n=105
minimum distance = 96

this is new optimal code


the previous bounds were -1/96
this is a projective code


We used the prescribed group of automorphisms with the following generators


2 0 0
0 9 4
0 9 12

This group makes 27 orbits of sizes:

7 7 1 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7


The solution of the corresponding linear system of equations was found after less than 10 seconds:

0 1 0 0 1 1 1 1 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 1 0 0 1 9 7 8 8 7 8 9 8 9 9 9 9 8 9 8 9 7 9 8 0 9 8 9 9 8 9 6


This produces the following generator matrix

0 0 0 0 0 0 0 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
12 12 12 12 12 12 12 0 1 4 2 8 10 7 1 1 4 2 2 6 6 9 11 11 7 7 6 6 5 5 8 10 10 6 6 0 12 2 5 11 8 6 0 12 2 5 11 8 6 12 12 8 8 10 7 7 4 4 9 9 5 5 7 0 1 4 2 8 10 7 0 1 4 5 11 10 7 0 1 4 5 11 10 7 12 2 2 9 9 10 10 1 1 9 9 11 8 8 12 12 4 4 2 11 11
0 12 1 4 2 3 6 11 9 11 7 6 7 6 1 2 7 4 8 0 10 12 0 3 1 9 7 6 5 6 11 0 2 12 8 3 10 11 1 10 3 11 9 5 9 4 7 5 4 0 4 2 10 1 8 7 4 5 0 1 11 7 10 5 12 1 12 1 5 3 2 10 12 10 9 9 2 8 8 3 3 4 6 4 3 0 6 9 10 12 4 0 5 11 3 2 9 8 2 6 0 8 5 12 11



Which is a code with the following weight distribution
1y105+1092x96y9+756x97y8+180x98y7+84x99y6+84x105