Code details
best found code with parameters
q=11 k=3 n=100
minimum distance = 90
this is new optimal code
the previous bounds were -1/90
this is a projective code
We used the prescribed group of automorphisms with the following generators
This group makes 9 orbits of sizes:
The solution of the corresponding linear system of equations was found after less than 10 seconds:
0
|
0
|
0
|
0
|
1
|
1
|
1
|
0
|
0
|
0
|
10
|
0
|
10
|
9
|
9
|
9
|
10
|
10
|
This produces the following generator matrix
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
10
|
1
|
1
|
8
|
8
|
2
|
2
|
4
|
4
|
9
|
9
|
7
|
7
|
3
|
3
|
6
|
6
|
5
|
5
|
10
|
10
|
10
|
10
|
1
|
1
|
1
|
1
|
8
|
8
|
8
|
8
|
2
|
2
|
2
|
2
|
4
|
4
|
4
|
4
|
9
|
9
|
9
|
9
|
7
|
7
|
7
|
7
|
3
|
3
|
3
|
3
|
6
|
6
|
6
|
6
|
5
|
5
|
5
|
5
|
10
|
10
|
10
|
10
|
1
|
1
|
1
|
1
|
8
|
8
|
8
|
8
|
2
|
2
|
2
|
2
|
4
|
4
|
4
|
4
|
9
|
9
|
9
|
9
|
7
|
7
|
7
|
7
|
3
|
3
|
3
|
3
|
6
|
6
|
6
|
6
|
5
|
5
|
5
|
5
|
10
|
5
|
1
|
6
|
8
|
3
|
2
|
7
|
4
|
9
|
4
|
9
|
2
|
7
|
8
|
3
|
1
|
6
|
10
|
5
|
1
|
4
|
9
|
6
|
10
|
2
|
7
|
5
|
2
|
4
|
9
|
7
|
1
|
8
|
3
|
6
|
10
|
8
|
3
|
5
|
10
|
8
|
3
|
5
|
1
|
8
|
3
|
6
|
2
|
4
|
9
|
7
|
10
|
2
|
7
|
5
|
1
|
4
|
9
|
6
|
8
|
2
|
7
|
3
|
8
|
4
|
9
|
3
|
10
|
1
|
6
|
5
|
10
|
4
|
9
|
5
|
1
|
2
|
7
|
6
|
1
|
2
|
7
|
6
|
10
|
4
|
9
|
5
|
10
|
1
|
6
|
5
|
8
|
4
|
9
|
3
|
8
|
2
|
7
|
3
|
Which is a code with the following weight distribution
1y100+300x90y10+1000x91y9+30x100