
Heuristic Construction of Linear Codes with
prescribed Automorphism Group

Johannes Zwanzger

University of Bayreuth

Soria Summer School
July 2008

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

1 Basic definitions

2 Diophantine inequations in coding theory

3 Prescription of automorphisms

4 A heuristic solution algorithm

5 Results

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A linear code C over Fq of blocklength n and dimension k is a
k−dimensional subspace of Fn

q

elements of C are called codewords and written as row vectors

weight wt(c) of c ∈ C : number of nonzero components in c

Hamming distance between c , c ′ ∈ C :
dist(c , c ′) := wt(c − c ′)

The minimum distance of C is the minimum Hamming
distance between any two different codewords of C .

C has minimum distance d ⇒ up to bd−1
2 c errors can be

corrected

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Lemma

Existence of a linear k-dimensional code over Fq with blocklength
n and minimum distance d

m

Existence of a (multi-)set P of n points in PG (k − 1, q) so that for
every hyperplane H holds: |H ∩ P| ≤ n − d.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Corollary

The search of linear (n, k, d , q)-codes is equivalent to looking for
solutions of the following diophantine (in-)equation system:

Mk
q x ≤


n − d
n − d

...
n − d


1T x = n

where x ∈ Nm
0 and Mk

q is the m ×m incidence matrix between
points (columns) and hyperplanes (rows) in PG (k − 1, q).

Problem: m gets huge very fast!

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Corollary

The search of linear (n, k, d , q)-codes is equivalent to looking for
solutions of the following diophantine (in-)equation system:

Mk
q x ≤


n − d
n − d

...
n − d


1T x = n

where x ∈ Nm
0 and Mk

q is the m ×m incidence matrix between
points (columns) and hyperplanes (rows) in PG (k − 1, q).

Problem: m gets huge very fast!

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points

⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points

⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points

⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points

⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points
⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points
⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).

⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A possible approach:

Prescribe a subgroup A of PGL(k, q) which must be contained
in the automorphism group of the point (multi-)set P

a ∈ PGL(k, q) is automorphism of P iff [p ∈ P ⇔ a(p) ∈ P]

Instead of choosing single points of PG (k − 1, q), we now
select complete orbits under the action of A on the points
⇒ number of variables is reduced to the number of orbits

Let p be a point of PG (k − 1, q), H be a hyperplane and
a ∈ A. Then we have: p ∈ H ⇔ a(p) ∈ a(H).
⇒ number of equations is reduced to the number of orbits of
A on the hyperplanes.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Example (q=3, k=3)

0
0
1

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

(0 0 1)⊥ 0 1 0 0 1 0 0 1 0 0 1 0 0

(0 1 0)⊥ 1 0 0 0 1 1 1 0 0 0 0 0 0

(0 1 1)⊥ 0 0 0 1 1 0 0 0 0 1 0 1 0

(0 1 2)⊥ 0 0 1 0 1 0 0 0 1 0 0 0 1

(1 0 0)⊥ 1 1 1 1 0 0 0 0 0 0 0 0 0

(1 0 1)⊥ 0 1 0 0 0 0 1 0 0 1 0 0 1

(1 0 2)⊥ 0 1 0 0 0 1 0 0 1 0 0 1 0

(1 1 0)⊥ 1 0 0 0 0 0 0 0 0 0 1 1 1

(1 1 1)⊥ 0 0 0 1 0 0 1 0 1 0 1 0 0

(1 1 2)⊥ 0 0 1 0 0 1 0 0 0 1 1 0 0

(1 2 0)⊥ 1 0 0 0 0 0 0 1 1 1 0 0 0

(1 2 1)⊥ 0 0 1 0 0 0 1 1 0 0 0 1 0

(1 2 2)⊥ 0 0 0 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1

Example (q=3, k=3)

A = 〈

(
0 1 0
0 2 1
1 2 1

)
〉

0
0
1

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

(0 0 1)⊥ 0 1 0 0 1 0 0 1 0 0 1 0 0

(0 1 0)⊥ 1 0 0 0 1 1 1 0 0 0 0 0 0

(0 1 1)⊥ 0 0 0 1 1 0 0 0 0 1 0 1 0

(0 1 2)⊥ 0 0 1 0 1 0 0 0 1 0 0 0 1

(1 0 0)⊥ 1 1 1 1 0 0 0 0 0 0 0 0 0

(1 0 1)⊥ 0 1 0 0 0 0 1 0 0 1 0 0 1

(1 0 2)⊥ 0 1 0 0 0 1 0 0 1 0 0 1 0

(1 1 0)⊥ 1 0 0 0 0 0 0 0 0 0 1 1 1

(1 1 1)⊥ 0 0 0 1 0 0 1 0 1 0 1 0 0

(1 1 2)⊥ 0 0 1 0 0 1 0 0 0 1 1 0 0

(1 2 0)⊥ 1 0 0 0 0 0 0 1 1 1 0 0 0

(1 2 1)⊥ 0 0 1 0 0 0 1 1 0 0 0 1 0

(1 2 2)⊥ 0 0 0 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1

Example (q=3, k=3)

A = 〈

(
0 1 0
0 2 1
1 2 1

)
〉

0
0
1

0
1
0

0
1
1

0
1
2

1
0
0

1
0
1

1
0
2

1
1
0

1
1
1

1
1
2

1
2
0

1
2
1

1
2
2

(0 0 1)⊥ 0 1 0 0 1 0 0 1 0 0 1 0 0

(0 1 0)⊥ 1 0 0 0 1 1 1 0 0 0 0 0 0

(0 1 1)⊥ 0 0 0 1 1 0 0 0 0 1 0 1 0

(0 1 2)⊥ 0 0 1 0 1 0 0 0 1 0 0 0 1

(1 0 0)⊥ 1 1 1 1 0 0 0 0 0 0 0 0 0

(1 0 1)⊥ 0 1 0 0 0 0 1 0 0 1 0 0 1

(1 0 2)⊥ 0 1 0 0 0 1 0 0 1 0 0 1 0

(1 1 0)⊥ 1 0 0 0 0 0 0 0 0 0 1 1 1

(1 1 1)⊥ 0 0 0 1 0 0 1 0 1 0 1 0 0

(1 1 2)⊥ 0 0 1 0 0 1 0 0 0 1 1 0 0

(1 2 0)⊥ 1 0 0 0 0 0 0 1 1 1 0 0 0

(1 2 1)⊥ 0 0 1 0 0 0 1 1 0 0 0 1 0

(1 2 2)⊥ 0 0 0 1 0 1 0 1 0 0 0 0 1
1 1 1 1 1 1 1 1 1 1 1 1 1

Example (q=3, k=3)

0 0 1
0 1 0
1 1 0

0 1 1
1 0 2
0 2 2

0 1 1
1 0 1
2 1 1

1 1 1
1 2 2
0 0 1

1
1
2

(0 0 1)⊥ 1 1 0 2 0

(0 1 0)⊥ 2 1 1 0 0

(0 1 1)⊥ 1 0 1 1 1

(0 1 2)⊥ 2 1 1 0 0

(1 0 0)⊥ 2 1 1 0 0

(1 0 1)⊥ 0 3 0 0 1

(1 0 2)⊥ 0 1 2 1 0

(1 1 0)⊥ 1 1 0 2 0

(1 1 1)⊥ 0 1 2 1 0

(1 1 2)⊥ 1 0 1 1 1

(1 2 0)⊥ 1 0 1 1 1

(1 2 1)⊥ 1 1 0 2 0

(1 2 2)⊥ 0 1 2 1 0
3 3 3 3 1

Example (q=3, k=3)

0 0 1
0 1 0
1 1 0

0 1 1
1 0 2
0 2 2

0 1 1
1 0 1
2 1 1

1 1 1
1 2 2
0 0 1

1
1
2

(0 0 1)⊥ 1 1 0 2 0

(0 1 0)⊥ 2 1 1 0 0

(0 1 1)⊥ 1 0 1 1 1

(0 1 2)⊥ 2 1 1 0 0

(1 0 0)⊥ 2 1 1 0 0

(1 0 1)⊥ 0 3 0 0 1

(1 0 2)⊥ 0 1 2 1 0

(1 1 0)⊥ 1 1 0 2 0

(1 1 1)⊥ 0 1 2 1 0

(1 1 2)⊥ 1 0 1 1 1

(1 2 0)⊥ 1 0 1 1 1

(1 2 1)⊥ 1 1 0 2 0

(1 2 2)⊥ 0 1 2 1 0
3 3 3 3 1

Example (q=3, k=3)

(
A−1

)
= 〈

(
0 2 1
1 0 0
1 1 0

)
〉

0 0 1
0 1 0
1 1 0

0 1 1
1 0 2
0 2 2

0 1 1
1 0 1
2 1 1

1 1 1
1 2 2
0 0 1

1
1
2

(0 0 1)⊥ 1 1 0 2 0

(0 1 0)⊥ 2 1 1 0 0

(0 1 1)⊥ 1 0 1 1 1

(0 1 2)⊥ 2 1 1 0 0

(1 0 0)⊥ 2 1 1 0 0

(1 0 1)⊥ 0 3 0 0 1

(1 0 2)⊥ 0 1 2 1 0

(1 1 0)⊥ 1 1 0 2 0

(1 1 1)⊥ 0 1 2 1 0

(1 1 2)⊥ 1 0 1 1 1

(1 2 0)⊥ 1 0 1 1 1

(1 2 1)⊥ 1 1 0 2 0

(1 2 2)⊥ 0 1 2 1 0
3 3 3 3 1

Example (q=3, k=3)

(
A−1

)
= 〈

(
0 2 1
1 0 0
1 1 0

)
〉

0 0 1
0 1 0
1 1 0

0 1 1
1 0 2
0 2 2

0 1 1
1 0 1
2 1 1

1 1 1
1 2 2
0 0 1

1
1
2

(0 0 1)⊥ 1 1 0 2 0

(0 1 0)⊥ 2 1 1 0 0

(0 1 1)⊥ 1 0 1 1 1

(0 1 2)⊥ 2 1 1 0 0

(1 0 0)⊥ 2 1 1 0 0

(1 0 1)⊥ 0 3 0 0 1

(1 0 2)⊥ 0 1 2 1 0

(1 1 0)⊥ 1 1 0 2 0

(1 1 1)⊥ 0 1 2 1 0

(1 1 2)⊥ 1 0 1 1 1

(1 2 0)⊥ 1 0 1 1 1

(1 2 1)⊥ 1 1 0 2 0

(1 2 2)⊥ 0 1 2 1 0
3 3 3 3 1

Example (q=3, k=3)

(
A−1

)
= 〈

(
0 2 1
1 0 0
1 1 0

)
〉

0 0 1
0 1 0
1 1 0

0 1 1
1 0 2
0 2 2

0 1 1
1 0 1
2 1 1

1 1 1
1 2 2
0 0 1

1
1
2

(0 0 1)⊥ 1 1 0 2 0

(0 1 0)⊥ 2 1 1 0 0

(0 1 1)⊥ 1 0 1 1 1

(1 0 1)⊥ 0 3 0 0 1

(1 0 2)⊥ 0 1 2 1 0

3 3 3 3 1

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

The reduced system:
1 1 0 2 0
2 1 1 0 0
1 0 1 1 1
0 3 0 0 1
0 1 2 1 0

 · x ≤


n − d
n − d
n − d
n − d
n − d


(

3 3 3 3 1
)

· x = n

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A heuristic solution algorithm:

Input: (In-)equation system of type

Ax ≤ c (indices 0 . . .m − 1)
B x = d (index m) ,

with x ∈ Nn
0, A ∈ Nm×n, c ∈ Nm, B ∈ N1×n

+ , d ∈ N+.

Output: solution of the system or ’search failed’

Remark: algorithm can easily be generalized to other
problems.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A heuristic solution algorithm:

Input: (In-)equation system of type

Ax ≤ c (indices 0 . . .m − 1)
B x = d (index m) ,

with x ∈ Nn
0, A ∈ Nm×n, c ∈ Nm, B ∈ N1×n

+ , d ∈ N+.

Output: solution of the system or ’search failed’

Remark: algorithm can easily be generalized to other
problems.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A heuristic solution algorithm:

Input: (In-)equation system of type

Ax ≤ c (indices 0 . . .m − 1)
B x = d (index m) ,

with x ∈ Nn
0, A ∈ Nm×n, c ∈ Nm, B ∈ N1×n

+ , d ∈ N+.

Output: solution of the system or ’search failed’

Remark: algorithm can easily be generalized to other
problems.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

A heuristic solution algorithm:

Input: (In-)equation system of type

Ax ≤ c (indices 0 . . .m − 1)
B x = d (index m) ,

with x ∈ Nn
0, A ∈ Nm×n, c ∈ Nm, B ∈ N1×n

+ , d ∈ N+.

Output: solution of the system or ’search failed’

Remark: algorithm can easily be generalized to other
problems.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Set all variables to zero.

Look at LHS[m]

LHS[m] < RHS[m] LHS[m] > RHS[m]LHS[m] = RHS[m]

 Backtracking possible?Is the current x a solution? no

update LHS[0..m]

Choose a variable to
 be increased by 1.

update LHS[0..m]

yes

no

Search failed, stop.

yes

Print solution, stop.

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]

set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0

do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Choice of the variable to be increased next:

For each variable v do the following:

compute left hand sides after increase of v and store it in
initialLHS[0..m]
set counter [0] = counter [1] = . . . = counter [m − 1] = 0
do ns sample runs (ns being a number fixed by the user)

set eval(v) :=
m−1∏
j=0

counter[j]
ns

choose v∗ so that eval(v∗) is maximal

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Pseudocode for a single sample run:

for (int i=0; i<=m; i++){ //restore initial LHS
LHS[i]=initialLHS[i];

}
while(LHS[m]<RHS[m]){ //increase vars randomly

randomly choose a variable w;
increase w by 1;
update LHS[0],LHS[1],...,LHS[m-1],LHS[m];

}
if (LHS[m]==RHS[m]){ //update counters

for (i=0; i<m; i++){
if (LHS[i]<=RHS[i]){

counter[i]++;
}

}
}

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

With the method presented we could construct the following new
linear binary codes:

k = 11 :

n d

41 16
73 32
81 34

136 62
139 64
146 66
149 68
155 72

k = 12 :

n d

74 32
83 34
99 42

102 44
107 46
110 48
140 64

k = 13 :

n d

41 14
155 68
158 70
161 72

(entries in boldface belong to optimal codes)

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

Basic definitions
Diophantine inequations in coding theory

Prescription of automorphisms
A heuristic solution algorithm

Results

Thanks for your attention!

Johannes Zwanzger Linear Codes with prescribed Automorphism Group

	Basic definitions
	Diophantine inequations in coding theory
	Prescription of automorphisms
	A heuristic solution algorithm
	Results

