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Motivation

1967: Nordstrom and Robinson find nonlinear binary [16, 28, 6]-code
(linear: minimum distance ≤ 5)

Preparata & Kerdock construct infinite series of such codes including
the NR-code.

Nechaev 1989, Hammons et al. 1994: K. & P.-codes are the Gray
image of Z4-linear codes

Questions: Are there more examples? What about other rings?
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Finite chain rings

Definition

A finite chain ring R is a finite ring with unity whose left ideals form a
chain R = I0 ) I1 · · · ) Im = {0}. m is called the chain length of R.

∃q : R/I1 ∼= Fq.

R, m and q will keep their meaning throughout this talk.

Example

R := Zpn , with p a prime (m = n, q = p).
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Linear codes over finite chain rings

Linear code over R of length n: submodule of RRn (row convention).

Example

R := Z8 ⇒

I0 = Z8, I1 = {0, 2, 4, 6}, I2 = {0, 4}, I3 = {0}

Γ =

 1 1 0 2 7
0 2 2 0 6
0 0 4 4 0


CΓ has shape (3, 2, 1).

R0 = Z8, R1 = {0, 1, 2, 3}, R2 = {0, 1} ⇒

CΓ = {uΓ : u ∈ R0 × R1 × R2}
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The homogeneous weight

Definition

Homogeneous weight:

w : R → Q,w(r) =


0 r = 0

q r ∈ Im−1 \ {0}
q − 1 r ∈ R \ Im−1

d(r , r ′) := w(r − r ′) (extend to Rn)

Minimum homogeneous distance:
d(C ) := min{d(c, c ′) : c , c ′ ∈ C , c 6= c ′} = min{w(c) : c ∈ C \ {0}}
M. Greferath and S. Schmidt, 1999:
∃ isometry Ψ : (R, qm−2 · d)→ (Fqm−1

q , dham) (“Gray map”)
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System of Diophantine inequalities

Theorem

Searching a linear (n, λ,≥ δ,R)-code
m

Solving the system:

Mx ≥

 δ
...
δ


1

T x = n

(M ∈ Nt×t
0 , x ∈ Nt

0)
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Example

R := Z4, λ := (2, 1, 1).

1
0
0

1
0
2

1
2
2

1
2
0

2
0
0

2
0
2

2
2
2

2
2
0

0
2
0

0
2
2

0
0
2

1 1 0 1 1 1 1 2 2 2 2 0 0 0
1 0 1 1 1 1 1 2 0 0 2 0 2 2
1 1 1 1 1 1 1 2 0 2 0 2 0 2
1 1 0 1 1 1 1 2 2 0 0 2 2 0

2 0 0 2 2 2 2 0 0 0 0 0 0 0

2 0 1 2 0 0 2 0 2 2 0 0 2 2
2 1 1 2 0 2 0 0 2 0 2 2 0 2
2 1 0 2 2 0 0 0 0 2 2 2 2 0
0 1 0 0 0 2 2 0 0 2 2 2 2 0
0 1 1 0 2 0 2 0 2 0 2 2 0 2
0 0 1 0 2 2 0 0 2 2 0 0 2 2

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 7 / 11



Example

R := Z4, λ := (2, 1, 1).

1
0
0

1
0
2

1
2
2

1
2
0

2
0
0

2
0
2

2
2
2

2
2
0

0
2
0

0
2
2

0
0
2

1 1 0 1 1 1 1 2 2 2 2 0 0 0
1 0 1 1 1 1 1 2 0 0 2 0 2 2
1 1 1 1 1 1 1 2 0 2 0 2 0 2
1 1 0 1 1 1 1 2 2 0 0 2 2 0

2 0 0 2 2 2 2 0 0 0 0 0 0 0

2 0 1 2 0 0 2 0 2 2 0 0 2 2
2 1 1 2 0 2 0 0 2 0 2 2 0 2
2 1 0 2 2 0 0 0 0 2 2 2 2 0
0 1 0 0 0 2 2 0 0 2 2 2 2 0
0 1 1 0 2 0 2 0 2 0 2 2 0 2
0 0 1 0 2 2 0 0 2 2 0 0 2 2

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 7 / 11



Heuristic algorithm

Define heuristic evaluation function eval : Nt
0 → R.

Construct x0 ≤ x1 ≤ x2 · · · ≤ xn in Nt
0 with

I x0 = 0
I xi+1 = xi + esi

I si chosen s. t. eval(xi + esi ) is maximized (“greedy”)

If xn is a solution → terminate; otherwise: backtracking.
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Evaluation function

Idea:

eval(x)
!
≈ ε(x) :=

|{y ≥ x : ‖y‖1 = n, My ≥ δ · 1}|
|{y ≥ x : ‖y‖1 = n}|

Consider inequalities Mi ,∗y ≥ δ separately:

εi (x) :=
|{y ≥ x : ‖y‖1 = n, Mi ,∗y ≥ δ}|

|{y ≥ x : ‖x‖1 = n}|

Assuming “stochastic independence” ⇒

ε(x) ≈
t−1∏
i=0

εi (x) =: eval(x)
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Computation of εi

εi (x) only depends from ‖x‖1 and Mi ,∗x .

Derive lookup table from coefficients of

pi (y , z) =
∏

s:as
i >0

 n∑
j=0

y sjz j

(
j + as

i − 1

j

)
(as

i := multiplicity of weight s in Mi ,∗)

Using reductions: ≤ (δ + 2)(n + 1)2 multiplications.

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 10 / 11



Computation of εi

εi (x) only depends from ‖x‖1 and Mi ,∗x .

Derive lookup table from coefficients of

pi (y , z) =
∏

s:as
i >0

 n∑
j=0

y sjz j

(
j + as

i − 1

j

)
(as

i := multiplicity of weight s in Mi ,∗)

Using reductions: ≤ (δ + 2)(n + 1)2 multiplications.

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 10 / 11



Computation of εi

εi (x) only depends from ‖x‖1 and Mi ,∗x .

Derive lookup table from coefficients of

pi (y , z) =
∏

s:as
i >0

 n∑
j=0

y sjz j

(
j + as

i − 1

j

)
(as

i := multiplicity of weight s in Mi ,∗)

Using reductions: ≤ (δ + 2)(n + 1)2 multiplications.

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 10 / 11



Computation of εi

εi (x) only depends from ‖x‖1 and Mi ,∗x .

Derive lookup table from coefficients of

pi (y , z) =
∏

s:as
i >0

 n∑
j=0

y sjz j

(
j + as

i − 1

j

)
(as

i := multiplicity of weight s in Mi ,∗)

Using reductions: ≤ (δ + 2)(n + 1)2 multiplications.

J. Zwanzger (Univ. of Bayreuth) Linear Codes over Finite Chain Rings Magdeburg, 11-13-09 10 / 11



Results

Codes of high minimum distance for more than 300 pairs (R, λ)
(n ≤ 100) were constructed.

For char(R) = p many of them are provably optimal.

Two new Z4-linear codes whose Gray image beats the corresponding
upper binary linear bound were found:

I λ = (2, 2, 2, 1), n = 29, d(C ) = 28
I λ = (2, 2, 2, 2), n = 57, d(C ) = 56

All results: http://www.mathe2.uni-bayreuth.de/20er/

Thanks for your attention!
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