Heuristic Construction of Linear Codes over Finite Chain Rings with High Minimum Homogeneous Weight

Johannes Zwanzger

University of Bayreuth

Magdeburg November 13th, 2009

• 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)

- 1967: Nordstrom and Robinson find nonlinear binary [16, 2^8 , 6]-code (linear: minimum distance \leq 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.

- 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.
- Nechaev 1989, Hammons et al. 1994: K. & P.-codes are the Gray image of $\mathbb{Z}_4\text{-linear codes}$

- 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.
- Nechaev 1989, Hammons et al. 1994: K. & P.-codes are the Gray image of $\mathbb{Z}_4\text{-linear codes}$

Questions: Are there more examples? What about other rings?

Definition

A finite chain ring *R* is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

Definition

A finite chain ring *R* is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

•
$$\exists q: R/I_1 \cong \mathbb{F}_q.$$

3 / 11

Definition

A finite chain ring *R* is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

- $\exists q: R/I_1 \cong \mathbb{F}_q.$
- *R*, *m* and *q* will keep their meaning throughout this talk.

Definition

A finite chain ring *R* is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

- $\exists q: R/I_1 \cong \mathbb{F}_q.$
- R, m and q will keep their meaning throughout this talk.

$$R := \mathbb{Z}_{p^n}$$
, with p a prime $(m = n, q = p)$.

Linear code over R of length n: submodule of $_R R^n$ (row convention).

Linear code over *R* of length *n*: submodule of $_R R^n$ (row convention).

Linear code over *R* of length *n*: submodule of $_R R^n$ (row convention).

Linear code over *R* of length *n*: submodule of $_R R^n$ (row convention).

$$R := \mathbb{Z}_8 \Rightarrow I_0 = \mathbb{Z}_8, I_1 = \{0, 2, 4, 6\}, I_2 = \{0, 4\}, I_3 = \{0\}$$

Linear code over *R* of length *n*: submodule of $_R R^n$ (row convention).

$$R := \mathbb{Z}_8 \Rightarrow I_0 = \mathbb{Z}_8, I_1 = \{0, 2, 4, 6\}, I_2 = \{0, 4\}, I_3 = \{0\}$$

$$\Gamma = \left(\begin{array}{cccc|c} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{array} \right)$$

Linear code over R of length n: submodule of $_RR^n$ (row convention).

$$R := \mathbb{Z}_8 \Rightarrow \mathit{I}_0 = \mathbb{Z}_8, \mathit{I}_1 = \{0, 2, 4, 6\}, \mathit{I}_2 = \{0, 4\}, \mathit{I}_3 = \{0\}$$

$$\Gamma = \left(\begin{array}{ccc|c} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{array} \right)$$

Linear code over R of length n: submodule of $_RR^n$ (row convention).

Example

$$R := \mathbb{Z}_8 \Rightarrow I_0 = \mathbb{Z}_8, I_1 = \{0, 2, 4, 6\}, I_2 = \{0, 4\}, I_3 = \{0\}$$

$$\Gamma = \left(egin{array}{cccccc} 1 & 1 & 0 & 2 & 7 \ 0 & 2 & 2 & 0 & 6 \ 0 & 0 & 4 & 4 & 0 \end{array}
ight)$$

• $R_0 = \mathbb{Z}_8$, $R_1 = \{0, 1, 2, 3\}$, $R_2 = \{0, 1\} \Rightarrow$

Linear code over R of length n: submodule of $_RR^n$ (row convention).

$$R := \mathbb{Z}_8 \Rightarrow I_0 = \mathbb{Z}_8, I_1 = \{0, 2, 4, 6\}, I_2 = \{0, 4\}, I_3 = \{0\}$$

$$ar{}=\left(egin{array}{ccccccc} 1 & 1 & 0 & 2 & 7 \ 0 & 2 & 2 & 0 & 6 \ 0 & 0 & 4 & 4 & 0 \end{array}
ight)$$

•
$$R_0 = \mathbb{Z}_8$$
, $R_1 = \{0, 1, 2, 3\}$, $R_2 = \{0, 1\} \Rightarrow C_{\Gamma} = \{u\Gamma : u \in R_0 \times R_1 \times R_2\}$

Definition

J. Zwanzger (Univ. of Bayreuth)
---------------	-------------------	---

Definition

• Homogeneous weight:

$$w: R \to \mathbb{Q}, w(r) = egin{cases} 0 & r = 0 \ q & r \in I_{m-1} \setminus \{0\} \ q - 1 & r \in R \setminus I_{m-1} \end{cases}$$

Definition

• Homogeneous weight:

$$w: R
ightarrow \mathbb{Q}, w(r) = egin{cases} 0 & r = 0 \ q & r \in I_{m-1} \setminus \{0\} \ q-1 & r \in R \setminus I_{m-1} \end{cases}$$

• d(r, r') := w(r - r') (extend to \mathbb{R}^n)

Definition

• Homogeneous weight:

$$w: R
ightarrow \mathbb{Q}, w(r) = egin{cases} 0 & r = 0 \ q & r \in I_{m-1} \setminus \{0\} \ q-1 & r \in R \setminus I_{m-1} \end{cases}$$

•
$$d(r,r') := w(r-r')$$
 (extend to R^n)

• Minimum homogeneous distance: $d(C) := \min\{d(c,c') : c, c' \in C, c \neq c'\} = \min\{w(c) : c \in C \setminus \{0\}\}$

Definition

• Homogeneous weight:

$$w: R
ightarrow \mathbb{Q}, w(r) = egin{cases} 0 & r = 0 \ q & r \in I_{m-1} \setminus \{0\} \ q-1 & r \in R \setminus I_{m-1} \end{cases}$$

•
$$d(r,r') := w(r-r')$$
 (extend to R^n)

- Minimum homogeneous distance: $d(C) := \min\{d(c,c') : c, c' \in C, c \neq c'\} = \min\{w(c) : c \in C \setminus \{0\}\}$
- M. Greferath and S. Schmidt, 1999: \exists isometry $\Psi : (R, q^{m-2} \cdot d) \rightarrow (\mathbb{F}_q^{q^{m-1}}, d_{ham})$ ("Gray map")

System of Diophantine inequalities

System of Diophantine inequalities

${\sf R}:=\mathbb{Z}_4,\lambda:=(2,1,1).$												
	1	1	1	1	2	2	2	2	0	0	0	
	0	0	2	2	0	0	2	2	2	2	0	
	0	2	2	0	0	2	2	0	0	2	2	
1 1 0	1	1	1	1	2	2	2	2	0	0	0	
$1 \ 0 \ 1$	1	1	1	1	2	0	0	2	0	2	2	
$1 \ 1 \ 1$	1	1	1	1	2	0	2	0	2	0	2	
1 1 0	1	1	1	1	2	2	0	0	2	2	0	
2 0 0	2	2	2	2	0	0	0	0	0	0	0	
2 0 1	2	0	0	2	0	2	2	0	0	2	2	
2 1 1	2	0	2	0	0	2	0	2	2	0	2	
2 1 0	2	2	0	0	0	0	2	2	2	2	0	
0 1 0	0	0	2	2	0	0	2	2	2	2	0	
0 1 1	0	2	0	2	0	2	0	2	2	0	2	
0 0 1	0	2	2	0	0	2	2	0	0	2	2	

• Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.
- Construct $x_0 \leq x_1 \leq x_2 \cdots \leq x_n$ in \mathbb{N}_0^t with

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.
- Construct $x_0 \leq x_1 \leq x_2 \cdots \leq x_n$ in \mathbb{N}_0^t with

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.
- Construct $x_0 \leq x_1 \leq x_2 \cdots \leq x_n$ in \mathbb{N}_0^t with
 - ► x₀ = 0
 - $x_{i+1} = x_i + e_{s_i}$

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.
- Construct $x_0 \leq x_1 \leq x_2 \cdots \leq x_n$ in \mathbb{N}_0^t with
 - ► x₀ = 0
 - $x_{i+1} = x_i + e_{s_i}$
 - ▶ s_i chosen s. t. $eval(x_i + e_{s_i})$ is maximized ("greedy")

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}$.
- Construct $x_0 \leq x_1 \leq x_2 \cdots \leq x_n$ in \mathbb{N}_0^t with
 - ► x₀ = 0
 - $\triangleright \quad x_{i+1} = x_i + e_{s_i}$
 - ▶ s_i chosen s. t. $eval(x_i + e_{s_i})$ is maximized ("greedy")
- If x_n is a solution \rightarrow terminate; otherwise: backtracking.

• Idea:

$$eval(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : \|y\|_1 = n, My \ge \delta \cdot \mathbb{1}\}|}{|\{y \ge x : \|y\|_1 = n\}|}$$

• Idea:

$$eval(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : \|y\|_1 = n, My \ge \delta \cdot 1\}|}{|\{y \ge x : \|y\|_1 = n\}|}$$

• Consider inequalities $M_{i,*}y \ge \delta$ separately:

• Idea:

$$eval(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : \|y\|_1 = n, My \ge \delta \cdot 1\}|}{|\{y \ge x : \|y\|_1 = n\}|}$$

• Consider inequalities $M_{i,*}y \ge \delta$ separately:

$$\epsilon_i(x) := \frac{|\{y \ge x : \|y\|_1 = n, \ M_{i,*}y \ge \delta\}|}{|\{y \ge x : \|x\|_1 = n\}|}$$

9 / 11

Idea:

$$eval(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : \|y\|_1 = n, My \ge \delta \cdot \mathbb{1}\}|}{|\{y \ge x : \|y\|_1 = n\}|}$$

• Consider inequalities $M_{i,*}y \ge \delta$ separately:

$$\epsilon_i(x) := \frac{|\{y \ge x : \|y\|_1 = n, \ M_{i,*}y \ge \delta\}|}{|\{y \ge x : \|x\|_1 = n\}|}$$

 \bullet Assuming "stochastic independence" \Rightarrow

$$\epsilon(x) \approx \prod_{i=0}^{t-1} \epsilon_i(x) =: \operatorname{eval}(x)$$

10 / 11

• $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.

10 / 11

- $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.
- Derive lookup table from coefficients of

$$p_i(y,z) = \prod_{s:a_i^s>0} \left(\sum_{j=0}^n y^{sj} z^j {j+a_i^s-1 \choose j} \right)$$

 $(a_i^s :=$ multiplicity of weight s in $M_{i,*})$

- $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.
- Derive lookup table from coefficients of

$$p_i(y,z) = \prod_{s:a_i^s > 0} \left(\sum_{j=0}^n y^{sj} z^j \binom{j+a_i^s-1}{j} \right)$$

 $(a_i^s :=$ multiplicity of weight s in $M_{i,*})$

• Using reductions: $\leq (\delta + 2)(n + 1)^2$ multiplications.

11 / 11

 Codes of high minimum distance for more than 300 pairs (R, λ) (n ≤ 100) were constructed.

11 / 11

- Codes of high minimum distance for more than 300 pairs (R, λ) (n ≤ 100) were constructed.
- For char(R) = p many of them are provably optimal.

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n \le 100)$ were constructed.
- For char(R) = p many of them are provably optimal.
- Two new Z₄-linear codes whose Gray image beats the corresponding upper binary linear bound were found:

- Codes of high minimum distance for more than 300 pairs (R, λ) (n ≤ 100) were constructed.
- For char(R) = p many of them are provably optimal.
- Two new Z₄-linear codes whose Gray image beats the corresponding upper binary linear bound were found:

•
$$\lambda = (2, 2, 2, 1), n = 29, d(C) = 28$$

•
$$\lambda = (2, 2, 2, 2), n = 57, d(C) = 56$$

- Codes of high minimum distance for more than 300 pairs (R, λ) (n ≤ 100) were constructed.
- For char(R) = p many of them are provably optimal.
- Two new Z₄-linear codes whose Gray image beats the corresponding upper binary linear bound were found:

•
$$\lambda = (2, 2, 2, 1), n = 29, d(C) = 28$$

•
$$\lambda = (2, 2, 2, 2), n = 57, d(C) = 56$$

• All results: http://www.mathe2.uni-bayreuth.de/20er/

11 / 11

- Codes of high minimum distance for more than 300 pairs (R, λ) (n ≤ 100) were constructed.
- For char(R) = p many of them are provably optimal.
- Two new Z₄-linear codes whose Gray image beats the corresponding upper binary linear bound were found:

•
$$\lambda = (2, 2, 2, 1), n = 29, d(C) = 28$$

•
$$\lambda = (2, 2, 2, 2), n = 57, d(C) = 56$$

• All results: http://www.mathe2.uni-bayreuth.de/20er/

Thanks for your attention!