Heuristic Construction of Linear Codes over Finite Chain Rings with High Minimum Homogeneous Weight

Johannes Zwanzger

University of Bayreuth

Magdeburg November 13th, 2009

1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)

- 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance \leq 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.

- 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.
- Nechaev 1989, Hammons et al. 1994: K. & P.-codes are the Gray image of \mathbb{Z}_4 -linear codes

- 1967: Nordstrom and Robinson find nonlinear binary $[16, 2^8, 6]$ -code (linear: minimum distance ≤ 5)
- Preparata & Kerdock construct infinite series of such codes including the NR-code.
- Nechaev 1989, Hammons et al. 1994: K. & P.-codes are the Gray image of \mathbb{Z}_4 -linear codes

Questions: Are there more examples? What about other rings?

Definition

A finite chain ring R is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

Definition

A finite chain ring R is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

$$
\bullet \; \exists q: R/I_1 \cong \mathbb{F}_q.
$$

Definition

A finite chain ring R is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

$$
\bullet \; \exists q: R/I_1 \cong \mathbb{F}_q.
$$

 \bullet R, m and q will keep their meaning throughout this talk.

Definition

A finite chain ring R is a finite ring with unity whose left ideals form a chain $R = I_0 \supseteq I_1 \cdots \supseteq I_m = \{0\}$. *m* is called the *chain length* of *R*.

$$
\bullet \; \exists q: R/I_1 \cong \mathbb{F}_q.
$$

 \bullet R, m and q will keep their meaning throughout this talk.

$$
R := \mathbb{Z}_{p^n}
$$
, with p a prime $(m = n, q = p)$.

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

$$
R:=\mathbb{Z}_8\Rightarrow I_0=\mathbb{Z}_8, I_1=\{0,2,4,6\}, I_2=\{0,4\}, I_3=\{0\}
$$

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

$$
R := \mathbb{Z}_8 \Rightarrow I_0 = \mathbb{Z}_8, I_1 = \{0, 2, 4, 6\}, I_2 = \{0, 4\}, I_3 = \{0\}
$$

$$
\Gamma = \left(\begin{array}{ccc|ccc} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{array}\right)
$$

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

$$
\mathit{R}:=\mathbb{Z}_8\Rightarrow\mathit{I}_0=\mathbb{Z}_8,\mathit{I}_1=\{0,2,4,6\},\mathit{I}_2=\{0,4\},\mathit{I}_3=\{0\}
$$

$$
\Gamma = \begin{pmatrix} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{pmatrix}
$$

• *C*_Γ has *shape* (3, 2, 1).

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

$$
\mathit{R}:=\mathbb{Z}_8\Rightarrow\mathit{I}_0=\mathbb{Z}_8,\mathit{I}_1=\{0,2,4,6\},\mathit{I}_2=\{0,4\},\mathit{I}_3=\{0\}
$$

$$
\Gamma = \left(\begin{array}{rrr} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{array}\right)
$$

•
$$
C_{\Gamma}
$$
 has shape $(3, 2, 1)$.

•
$$
R_0 = \mathbb{Z}_8
$$
, $R_1 = \{0, 1, 2, 3\}$, $R_2 = \{0, 1\}$ \Rightarrow

Linear code over R of length n: submodule of ${}_{R}R^{n}$ (row convention).

$$
\mathit{R}:=\mathbb{Z}_8\Rightarrow\mathit{I}_0=\mathbb{Z}_8,\mathit{I}_1=\{0,2,4,6\},\mathit{I}_2=\{0,4\},\mathit{I}_3=\{0\}
$$

$$
\mathsf{\Gamma} = \left(\begin{array}{ccc|ccc} 1 & 1 & 0 & 2 & 7 \\ 0 & 2 & 2 & 0 & 6 \\ 0 & 0 & 4 & 4 & 0 \end{array} \right)
$$

•
$$
C_{\Gamma}
$$
 has shape $(3, 2, 1)$.

•
$$
R_0 = \mathbb{Z}_8
$$
, $R_1 = \{0, 1, 2, 3\}$, $R_2 = \{0, 1\}$ \Rightarrow
 $C_\Gamma = \{u\Gamma : u \in R_0 \times R_1 \times R_2\}$

Definition

I

Definition

• Homogeneous weight:

$$
w: R \to \mathbb{Q}, w(r) = \begin{cases} 0 & r = 0 \\ q & r \in I_{m-1} \setminus \{0\} \\ q - 1 & r \in R \setminus I_{m-1} \end{cases}
$$

Definition

• Homogeneous weight:

$$
w: R \to \mathbb{Q}, w(r) = \begin{cases} 0 & r = 0 \\ q & r \in I_{m-1} \setminus \{0\} \\ q - 1 & r \in R \setminus I_{m-1} \end{cases}
$$

 $d(r, r') := w(r - r')$ (extend to R^n)

Definition

• Homogeneous weight:

$$
w: R \to \mathbb{Q}, w(r) = \begin{cases} 0 & r = 0 \\ q & r \in I_{m-1} \setminus \{0\} \\ q - 1 & r \in R \setminus I_{m-1} \end{cases}
$$

•
$$
d(r, r') := w(r - r')
$$
 (extend to R^n)

• Minimum homogeneous distance: $d(C) := \min\{d(c, c') : c, c' \in C, c \neq c'\} = \min\{w(c) : c \in C \setminus \{0\}\}\$

Definition

• Homogeneous weight:

$$
w: R \to \mathbb{Q}, w(r) = \begin{cases} 0 & r = 0 \\ q & r \in I_{m-1} \setminus \{0\} \\ q - 1 & r \in R \setminus I_{m-1} \end{cases}
$$

- $d(r, r') := w(r r')$ (extend to R^n)
- Minimum homogeneous distance: $d(C) := \min\{d(c, c') : c, c' \in C, c \neq c'\} = \min\{w(c) : c \in C \setminus \{0\}\}\$
- M. Greferath and S. Schmidt, 1999: \exists isometry $\Psi: (R, q^{m-2} \cdot d) \rightarrow (\mathbb{F}_q^{q^{m-1}}, d_{\mathsf{ham}})$ ("Gray map")

System of Diophantine inequalities

System of Diophantine inequalities

Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$
- Construct $x_0 \le x_1 \le x_2 \cdots \le x_n$ in \mathbb{N}_0^t with

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$
- Construct $x_0 \le x_1 \le x_2 \cdots \le x_n$ in \mathbb{N}_0^t with

$$
\blacktriangleright\ x_0=0
$$

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$
- Construct $x_0 \le x_1 \le x_2 \cdots \le x_n$ in \mathbb{N}_0^t with
	- \blacktriangleright $x_0 = 0$
	- $x_{i+1} = x_i + e_{s_i}$

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$
- Construct $x_0 \le x_1 \le x_2 \cdots \le x_n$ in \mathbb{N}_0^t with
	- \blacktriangleright $x_0 = 0$
	- $x_{i+1} = x_i + e_{s_i}$
	- \blacktriangleright s_i chosen s. t. eval $(x_i + e_{s_i})$ is maximized ("greedy")

- Define heuristic evaluation function eval : $\mathbb{N}_0^t \to \mathbb{R}.$
- Construct $x_0 \le x_1 \le x_2 \cdots \le x_n$ in \mathbb{N}_0^t with
	- \blacktriangleright $x_0 = 0$
	- $x_{i+1} = x_i + e_{s_i}$
	- \blacktriangleright s_i chosen s. t. eval $(x_i + e_{s_i})$ is maximized ("greedy")
- If x_n is a solution \rightarrow terminate; otherwise: backtracking.

· Idea:

$$
\text{eval}(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : ||y||_1 = n, My \ge \delta \cdot \mathbb{1}\}|}{|\{y \ge x : ||y||_1 = n\}|}
$$

· Idea:

$$
\text{eval}(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : ||y||_1 = n, My \ge \delta \cdot \mathbb{1}\}|}{|\{y \ge x : ||y||_1 = n\}|}
$$

• Consider inequalities $M_{i,*}y ≥ δ$ separately:

· Idea:

$$
\text{eval}(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : ||y||_1 = n, My \ge \delta \cdot 1\}|}{|\{y \ge x : ||y||_1 = n\}|}
$$

• Consider inequalities $M_{i,*}y ≥ δ$ separately:

$$
\epsilon_i(x) := \frac{|\{y \ge x : ||y||_1 = n, M_{i, *} y \ge \delta\}|}{|\{y \ge x : ||x||_1 = n\}|}
$$

Idea:

$$
eval(x) \stackrel{!}{\approx} \epsilon(x) := \frac{|\{y \ge x : ||y||_1 = n, My \ge \delta \cdot \mathbb{1}\}|}{|\{y \ge x : ||y||_1 = n\}|}
$$

• Consider inequalities $M_{i,*}y \geq δ$ separately:

$$
\epsilon_i(x) := \frac{|\{y \ge x : ||y||_1 = n, M_{i, *} y \ge \delta\}|}{|\{y \ge x : ||x||_1 = n\}|}
$$

Assuming "stochastic independence" ⇒

$$
\epsilon(x) \approx \prod_{i=0}^{t-1} \epsilon_i(x) =: \text{eval}(x)
$$

• $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.

- $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.
- Derive lookup table from coefficients of

$$
p_i(y, z) = \prod_{s: a_i^s > 0} \left(\sum_{j=0}^n y^{sj} z^j \binom{j + a_i^s - 1}{j} \right)
$$

 $(a_i^s :=$ multiplicity of weight s in $M_{i,*}$)

- $\epsilon_i(x)$ only depends from $||x||_1$ and $M_{i,*}x$.
- Derive lookup table from coefficients of

$$
p_i(y, z) = \prod_{s: a_i^s > 0} \left(\sum_{j=0}^n y^{sj} z^j {j + a_i^s - 1 \choose j} \right)
$$

 $(a_i^s :=$ multiplicity of weight s in $M_{i,*}$)

• Using reductions: $\leq (\delta + 2)(n + 1)^2$ multiplications.

• Codes of high minimum distance for more than 300 pairs (R, λ) $(n \leq 100)$ were constructed.

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n \leq 100)$ were constructed.
- For char(R) = p many of them are provably optimal.

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n < 100)$ were constructed.
- For char(R) = p many of them are provably optimal.
- \bullet Two new \mathbb{Z}_4 -linear codes whose Gray image beats the corresponding upper binary linear bound were found:

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n < 100)$ were constructed.
- For char(R) = p many of them are provably optimal.
- \bullet Two new \mathbb{Z}_4 -linear codes whose Gray image beats the corresponding upper binary linear bound were found:

$$
\blacktriangleright \ \lambda = (2, 2, 2, 1), \ n = 29, \ d(C) = 28
$$

$$
\blacktriangleright \ \lambda = (2, 2, 2, 2), \ n = 57, \ d(C) = 56
$$

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n < 100)$ were constructed.
- For char(R) = p many of them are provably optimal.
- \bullet Two new \mathbb{Z}_4 -linear codes whose Gray image beats the corresponding upper binary linear bound were found:

$$
\blacktriangleright \ \lambda = (2, 2, 2, 1), \ n = 29, \ d(C) = 28
$$

$$
\blacktriangleright \ \lambda = (2, 2, 2, 2), \ n = 57, \ d(C) = 56
$$

All results: <http://www.mathe2.uni-bayreuth.de/20er/>

- Codes of high minimum distance for more than 300 pairs (R, λ) $(n < 100)$ were constructed.
- For char(R) = p many of them are provably optimal.
- \bullet Two new \mathbb{Z}_4 -linear codes whose Gray image beats the corresponding upper binary linear bound were found:

$$
\blacktriangleright \ \lambda = (2, 2, 2, 1), \ n = 29, \ d(C) = 28
$$

$$
\blacktriangleright \ \lambda = (2, 2, 2, 2), \ n = 57, \ d(C) = 56
$$

All results: <http://www.mathe2.uni-bayreuth.de/20er/>

Thanks for your attention!