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@ The minimum distance of C is the minimum Hamming distance
between any two different codewords of C.

@ In the linear case the minimum distance equals the minimum weight
over all nonzero codewords in C

e C has minimum distance d = up to L%J errors can be corrected

@ C can be described by a generator matrix I' € FSX", whose rows form
a basis of C
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Example

1 001 1
=1 0101 2
0 011 2

S o R O

generates a code with parameters n = 6, k = 3, d = 3 over F3.

Observations:
@ codewords arise via multiplication of IE"; with: C={vl:ve IE";}

@ the j—th component of a codeword ¢ = (1, ¢, ..., ¢y) = vl only
depends from the j—th column of I': ¢; = vI;

e multiplying a column of I' with A € F; has no influence on the weights

o AeF;, veFs= wt(vl) = wt(Avl)




Theorem

Lett:= % and Qi.q = (wiv),(uy) € Nt be the matrix (well-)defined by

. 0 if{v,u)r, =0
W) () = { 1 else ’

for (v), (u) € PPG(k —1,q) with v, u € Fg*. Then:
Existence of a nonredundant linear (n, k, d, q)—code

)

Existence of a multiset {{u1), (u2), ..., (us)} C PPG(k — 1, q) so that

is true for each (v) € PPG(k — 1,q).
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Heuristic Algorithm

Input:

@ code parameters n, k, d, q

@ initial column multiset Xy

e evaluation function eval : P(PPG(k —1,q)) — R
Output: column multiset X for a (n, k, d, g)—code or FAILED

(1) Set X «— Xp.

(2) For each x € PPG(k — 1, q), compute eval(X U {x}).

(3) Choose a point x* maximizing the value in (2). Set X «— X U {x*}.
(4) If | X| < n, go to (2).

(5) If dx > d, return X; otherwise, return FAILED.
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Observation:

1

o For each row of Q , there are exactly g¥~! columns with a '1’

U (a1
t qk—l

o~ p:=1

Consequences:

(v) := arbitrary row index of Qy 4

X' := random multiset of m column indizes := {(u1), (u2), ..., (um)}
j<meN

o Prob( 3wy =4) =P 97 I(}) = 1
=1
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Observation:

k—1

@ For each row of € 4 there are exactly ¢“~* columns with a '1’

1 (a=D(@ )
t gk—1

o~ p:=1

Consequences:

(v) := arbitrary row index of Qy 4

X' := random multiset of m column indizes := {(u1), (u2), ..., (um)}
j<meN

o Prob( 3wy =4) =P 97 I(}) = 1
° Prob<2w< Vo(u) = ) Zrm/
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Let n, k, d, g be fixed.
Consider X C PPG(k — 1, q) with |X]|:=n" < n.

Goal: Find a 'sensible’ evaluation for X

Approach:
R; = set of rows of ) 5 where sum "over X' equals i
aj = ’R,‘
Y := random multisubset of PPG(k —1,q) with |Y|=n—n’

e X U Y multiset for (n, k, d, q)—code <
Vi < d — 1: for each row in R; the row sum 'over Y'is > d — i

@ Probability for a single row is s,_, q—;

@ Assumption of stochastic indipendence ~~...
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eval(X) := H Sl di
i=1
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Definition

d—1
eval(X) := H &Y o
i=1
Example
1 0 0 0 0 1
0 1 0 0 0 1
M= 0 01 0 0 1
0O 0 01 0 1
0O 0 0 0 1 1
Assume we want to construct a linear (10,5, 4,2)-code. What is the

evaluation of 17
e weight-polynomial is W¢, (x) = x° + 15x2 + 15x* + x°

.. _ 16 __ 656896 _ (656896\15 -3
o here: p= 32 = 550 = 93950 = eval(l1) = (§33557)  ~ 6.04-10
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Example

1 0 0 0 0 1
0 1 0 0 0 1
lb=] 0 0 1 0 0 1
0 0 01 01
0 0 0 01O

And what is eval(l'2)?
o weight-polynomial is W¢,(x) = x° + 1x! 4+ 10x? + 10x3 + 5x* + 5x5
o eval(ly) = 535 5% - 539 ~6.36-1073

e = although mindist(C1) > mindist(Cy), Iz is preferred over 'y




Results

g=2, k=10: g=>5k=06: g=5 k=T
n| 181|186 n| 47 n|19 33|37 |44
d| 86 | 88 d| 32 d| 10|20 |23 |28
g=17, k=4 qg=17,k=5: qgq=17, k=6:

n| 77 n|56|62|68 n|62|67 |73

d| 63 d|43 |48 |53 d |46 |50 |55

g=9, k=5
n |33
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