The generator matrix 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 3 1 1 1 0 1 1 6 1 1 1 3 1 1 3 1 0 1 1 6 1 1 1 1 1 1 1 1 1 1 0 1 1 6 1 1 1 1 1 1 1 1 0 1 6 1 6 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 6 1 0 1 0 1 0 1 1 8 0 1 8 1 7 1 0 8 2 0 4 1 0 1 7 8 4 1 2 0 1 0 7 8 1 2 7 1 7 1 3 8 1 6 3 5 4 7 1 3 8 3 4 1 4 6 1 7 6 8 7 5 4 6 3 1 6 1 5 1 5 1 2 7 7 8 3 2 0 2 0 8 3 8 2 2 1 1 3 1 6 1 7 0 0 6 0 0 0 0 0 0 0 6 3 3 3 3 0 6 0 6 3 3 3 0 3 3 0 6 6 3 6 6 6 3 6 0 6 6 3 6 0 0 3 0 6 6 0 3 0 0 3 6 0 3 3 3 3 0 6 3 0 6 0 6 0 0 0 3 3 3 6 3 0 6 6 6 0 3 0 0 3 6 3 0 6 0 6 6 0 0 0 3 0 0 0 3 6 3 0 6 3 6 6 3 6 3 6 6 6 3 3 0 0 0 6 6 0 0 0 3 6 0 6 0 3 6 0 0 6 3 3 0 3 0 6 6 6 3 0 0 6 0 3 3 3 3 3 6 6 0 3 0 3 3 3 6 3 0 0 6 6 0 6 0 3 3 0 3 0 0 3 3 6 6 0 0 0 0 0 3 0 3 3 3 3 3 6 0 0 3 0 3 6 0 6 0 3 0 3 0 0 3 0 3 3 6 0 0 3 6 0 6 6 6 6 6 3 3 3 3 6 3 3 0 3 3 3 6 0 6 6 0 6 3 0 6 6 0 0 6 6 6 3 3 3 3 6 6 0 3 6 6 3 0 3 0 6 0 6 3 3 6 0 0 0 0 0 6 6 0 6 3 0 6 3 6 3 6 6 6 0 3 3 0 6 6 6 3 3 3 3 6 3 6 0 6 0 3 0 3 6 6 3 0 0 6 3 0 0 0 3 6 3 0 6 0 3 6 3 6 0 0 3 6 3 6 6 3 3 6 3 0 0 3 0 6 3 3 0 3 0 6 6 6 3 6 0 0 0 generates a code of length 87 over Z9 who´s minimum homogenous weight is 161. Homogenous weight enumerator: w(x)=1x^0+132x^161+122x^162+402x^164+388x^165+516x^167+180x^168+546x^170+300x^171+636x^173+354x^174+678x^176+252x^177+714x^179+238x^180+462x^182+178x^183+198x^185+54x^186+66x^188+38x^189+12x^191+26x^192+12x^194+18x^198+18x^201+8x^207+8x^210+4x^216 The gray image is a code over GF(3) with n=261, k=8 and d=161. This code was found by Heurico 1.16 in 66 seconds.