The generator matrix 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 1 3 1 1 1 0 1 1 3 1 1 6 1 1 3 1 1 1 0 1 1 1 1 1 1 0 6 0 1 1 1 3 1 1 1 1 1 3 1 1 1 3 1 1 1 1 0 3 1 1 1 1 6 1 1 1 1 1 1 6 3 1 3 0 1 1 1 1 0 1 1 8 0 1 8 1 7 1 0 8 2 0 4 1 0 1 7 8 4 1 2 0 1 3 7 1 0 7 1 6 8 7 1 8 6 4 6 5 6 1 1 1 3 7 6 1 7 3 7 3 0 1 4 1 0 1 6 4 0 3 1 1 6 4 4 7 1 4 4 2 5 4 8 1 1 1 1 1 0 2 2 2 0 0 6 0 0 0 0 0 0 0 6 3 3 3 3 0 6 0 6 3 3 3 0 3 3 6 6 3 0 6 6 0 0 3 6 6 6 0 0 6 3 6 6 0 0 3 3 3 0 0 3 0 3 3 3 3 3 0 3 6 6 6 3 0 6 0 0 3 6 6 3 3 6 0 6 3 6 0 0 3 6 6 3 6 0 0 0 3 0 0 0 3 6 3 0 6 3 6 6 3 6 3 6 6 6 3 3 0 0 0 0 0 0 6 3 0 0 6 0 0 0 6 6 6 6 3 3 6 3 3 6 6 3 0 3 6 3 0 0 6 6 6 3 6 0 6 6 0 0 3 6 3 0 3 3 0 0 0 6 6 0 0 3 3 6 0 3 0 0 0 0 0 3 0 3 3 3 3 3 6 0 0 3 0 3 6 0 6 0 3 0 3 3 3 6 0 0 3 0 3 6 0 3 0 6 6 6 0 6 0 6 0 6 3 6 0 6 6 0 3 3 0 6 3 6 3 3 3 0 6 3 3 0 0 0 3 0 3 0 6 6 6 6 6 3 3 3 0 0 3 0 0 0 0 0 0 0 6 6 0 6 3 0 6 3 6 3 6 6 6 0 3 3 0 6 6 3 6 3 6 3 3 6 3 6 0 6 3 6 3 0 3 3 0 0 0 6 0 6 3 3 0 3 3 6 3 0 0 0 6 0 0 0 3 6 0 6 3 3 3 3 0 0 3 3 3 6 6 3 6 6 6 3 3 6 6 generates a code of length 84 over Z9 who´s minimum homogenous weight is 155. Homogenous weight enumerator: w(x)=1x^0+96x^155+150x^156+438x^158+202x^159+564x^161+212x^162+618x^164+438x^165+576x^167+374x^168+594x^170+258x^171+642x^173+282x^174+492x^176+150x^177+240x^179+22x^180+102x^182+30x^183+6x^185+12x^186+6x^188+10x^189+12x^192+10x^195+6x^198+6x^201+6x^204+2x^207+2x^213+2x^216 The gray image is a code over GF(3) with n=252, k=8 and d=155. This code was found by Heurico 1.16 in 8.54 seconds.