The generator matrix 1 0 1 1 1 1 1 0 1 0 1 1 1 1 1 0 3 1 1 1 0 1 1 3 1 3 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 6 1 1 0 6 1 3 1 0 1 1 8 0 1 8 1 7 1 0 8 2 7 0 1 1 0 8 7 1 8 7 1 3 1 3 7 1 0 8 6 7 3 6 2 4 5 4 2 8 1 1 5 2 1 1 1 1 0 0 0 6 0 0 0 0 0 0 0 6 3 3 6 6 6 6 6 6 0 3 3 0 0 3 6 3 6 0 0 0 6 3 6 3 0 6 3 0 6 6 3 6 6 3 6 0 6 6 0 0 0 0 3 0 0 0 3 6 3 0 6 3 6 6 0 6 6 0 3 6 3 6 3 3 3 0 3 0 3 3 6 6 3 3 6 3 0 6 6 3 3 0 6 6 3 3 3 6 0 0 0 0 0 3 0 3 3 3 3 3 6 0 3 3 0 6 0 0 0 0 6 6 6 3 0 6 3 3 6 0 3 6 6 6 0 0 3 3 0 3 3 0 3 0 6 6 3 0 0 0 0 0 0 0 6 6 0 6 3 0 6 3 3 6 6 3 3 6 6 0 0 3 0 6 6 0 0 6 3 3 0 3 0 3 3 3 6 0 6 3 0 3 6 6 0 6 6 6 0 generates a code of length 50 over Z9 who´s minimum homogenous weight is 87. Homogenous weight enumerator: w(x)=1x^0+52x^87+24x^88+48x^89+232x^90+96x^91+132x^92+442x^93+198x^94+210x^95+542x^96+282x^97+234x^98+636x^99+246x^100+318x^101+714x^102+276x^103+324x^104+604x^105+234x^106+150x^107+260x^108+90x^109+36x^110+68x^111+12x^112+6x^113+30x^114+26x^117+16x^120+14x^123+6x^126+2x^129 The gray image is a code over GF(3) with n=150, k=8 and d=87. This code was found by Heurico 1.16 in 0.525 seconds.