The generator matrix 1 0 0 0 1 1 1 1 2 1 0 4 1 0 1 6 1 6 1 1 1 2 2 6 1 0 0 1 1 1 1 4 0 0 1 1 6 1 2 4 1 1 1 1 2 1 4 1 4 1 0 6 1 6 6 6 1 0 1 2 0 4 0 6 0 4 6 0 1 0 0 0 1 4 5 1 0 2 1 3 1 5 1 0 6 7 1 6 4 6 1 1 1 1 7 6 7 0 2 1 1 2 1 1 4 1 0 7 5 2 4 4 4 6 7 6 0 2 1 4 2 1 1 7 1 1 1 2 1 1 1 1 1 2 0 0 1 0 0 4 1 5 5 1 1 0 4 7 7 6 6 1 5 2 6 1 4 4 1 5 7 0 3 7 7 1 5 4 3 2 2 7 1 0 2 6 1 2 1 0 0 4 1 1 1 0 7 1 7 7 3 1 3 1 1 3 2 3 0 2 4 0 0 0 1 1 0 4 5 5 5 1 7 7 6 4 4 7 6 0 4 0 1 1 7 3 2 5 7 5 0 2 2 6 5 6 1 2 1 7 1 6 1 0 1 5 5 1 6 5 2 0 2 3 5 4 3 1 2 4 1 6 4 4 3 1 5 1 0 0 0 0 2 2 2 2 4 4 6 2 0 6 4 0 2 0 4 6 0 0 2 4 0 0 2 6 2 2 4 6 2 6 6 2 2 4 0 4 0 0 0 0 6 4 4 0 2 6 4 4 6 0 2 4 6 6 0 6 4 4 2 2 4 4 6 generates a code of length 67 over Z8 who´s minimum homogenous weight is 59. Homogenous weight enumerator: w(x)=1x^0+254x^59+466x^60+808x^61+961x^62+1162x^63+1111x^64+1424x^65+1391x^66+1506x^67+1313x^68+1482x^69+1089x^70+1010x^71+795x^72+712x^73+401x^74+226x^75+111x^76+82x^77+26x^78+32x^79+9x^80+4x^81+4x^82+2x^83+2x^84 The gray image is a code over GF(2) with n=268, k=14 and d=118. This code was found by Heurico 1.11 in 5.69 seconds.