The generator matrix 1 0 1 1 1 6 1 1 4 1 1 2 4 1 1 1 6 1 4 1 1 6 1 1 6 1 1 1 1 0 4 1 1 0 4 1 0 1 1 1 1 0 1 1 4 0 1 1 1 1 1 1 0 1 4 2 1 4 1 1 4 4 1 1 2 1 6 2 4 2 6 6 0 1 1 0 1 1 2 7 1 6 7 1 1 4 5 3 1 0 1 1 6 1 2 3 1 5 5 2 3 1 1 7 4 1 1 2 1 0 4 3 1 1 0 1 1 1 1 0 6 2 3 7 1 2 1 1 0 1 7 1 1 2 0 0 1 2 1 0 0 0 1 1 0 0 2 0 0 0 0 0 0 0 6 4 6 2 4 6 2 2 4 2 2 0 2 0 2 2 4 2 4 6 0 4 4 6 2 6 4 2 0 4 4 6 4 0 0 6 6 0 4 2 4 2 2 0 4 0 0 4 2 2 4 2 6 2 0 2 2 2 4 0 6 2 0 0 0 2 0 0 2 4 0 0 0 0 0 2 2 6 2 4 2 6 0 2 2 4 6 4 0 0 2 0 2 6 4 2 6 4 2 6 0 2 4 6 0 4 2 2 2 2 0 2 6 4 0 4 6 0 2 2 6 6 2 2 0 4 2 6 0 2 2 2 2 2 0 0 0 0 2 0 0 6 6 4 4 6 4 2 2 0 4 2 2 0 2 6 2 0 6 6 4 4 0 2 0 0 6 0 6 2 4 4 0 6 4 2 2 4 2 0 4 6 4 2 6 6 2 6 0 2 6 0 2 0 6 6 4 0 2 4 4 4 6 2 2 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 4 4 0 4 0 4 0 0 4 4 0 0 0 0 4 4 4 0 4 4 4 0 0 4 4 4 4 0 4 0 4 4 0 0 4 0 4 0 4 4 4 4 0 0 0 0 0 0 4 4 0 4 4 4 0 4 0 4 0 4 4 0 0 0 0 0 4 0 4 0 0 0 0 4 0 0 4 0 0 0 4 4 4 0 4 0 4 4 4 0 0 0 4 4 4 4 4 0 4 4 0 4 4 4 0 4 4 0 4 0 0 4 0 4 generates a code of length 72 over Z8 who´s minimum homogenous weight is 62. Homogenous weight enumerator: w(x)=1x^0+155x^62+76x^63+446x^64+236x^65+881x^66+576x^67+1385x^68+960x^69+1431x^70+1176x^71+1750x^72+1248x^73+1640x^74+1032x^75+1152x^76+560x^77+687x^78+204x^79+360x^80+68x^81+219x^82+8x^83+69x^84+39x^86+18x^88+4x^90+2x^92+1x^96 The gray image is a code over GF(2) with n=288, k=14 and d=124. This code was found by Heurico 1.16 in 13.7 seconds.