The generator matrix 1 0 0 0 1 1 1 0 1 4 1 2 1 1 2 1 4 0 6 2 1 2 0 1 1 1 1 1 1 4 2 6 0 6 1 6 1 1 1 0 1 2 1 1 1 1 2 6 1 1 0 1 4 1 6 4 4 1 1 6 0 0 1 1 0 1 6 1 6 1 4 1 0 2 0 1 4 2 1 2 1 1 4 1 2 2 1 2 0 1 1 2 1 0 1 0 0 0 1 1 1 4 0 1 1 0 5 1 4 4 1 2 2 6 1 1 6 7 3 7 3 4 1 0 4 1 1 2 6 6 5 4 1 2 1 0 6 7 5 1 1 7 0 2 2 1 0 4 1 2 5 1 0 0 2 4 5 6 3 1 3 1 6 1 2 4 1 0 2 1 1 5 1 4 7 1 6 1 6 2 6 4 0 7 6 0 0 0 1 0 1 4 5 1 1 1 1 1 4 0 0 3 1 7 1 4 1 5 4 4 2 7 4 1 2 2 1 2 5 5 5 1 6 7 6 2 3 2 2 3 0 3 7 7 2 6 1 7 5 7 1 7 1 5 6 1 1 2 7 3 0 7 4 5 0 2 1 4 1 1 1 2 1 3 1 5 5 0 0 7 1 1 1 1 2 5 7 1 0 0 0 0 1 4 0 4 4 1 1 5 1 1 5 3 5 3 5 0 1 6 2 1 2 6 7 3 2 7 2 3 1 2 3 7 2 0 4 2 7 2 3 5 3 1 5 7 0 4 0 0 4 7 3 4 0 5 3 1 6 2 1 6 6 1 0 2 1 5 7 2 4 5 0 6 2 7 4 2 7 0 7 0 2 3 5 1 2 1 3 2 7 0 generates a code of length 93 over Z8 who´s minimum homogenous weight is 86. Homogenous weight enumerator: w(x)=1x^0+42x^86+272x^87+316x^88+476x^89+335x^90+382x^91+359x^92+338x^93+266x^94+256x^95+150x^96+224x^97+103x^98+150x^99+91x^100+118x^101+46x^102+36x^103+43x^104+24x^105+20x^106+24x^107+15x^108+4x^109+4x^110+1x^116 The gray image is a code over GF(2) with n=372, k=12 and d=172. This code was found by Heurico 1.11 in 0.776 seconds.