The generator matrix 1 0 0 1 1 1 0 4 1 1 1 2 6 1 2 1 1 6 1 6 1 1 1 1 4 1 2 1 1 4 1 0 1 1 4 0 1 1 6 1 1 6 0 1 4 6 1 1 0 1 0 1 1 1 4 1 0 1 1 6 1 1 2 1 1 1 1 1 1 1 1 1 0 1 0 0 1 3 1 6 2 1 2 1 1 7 6 6 4 1 1 1 7 6 4 7 1 1 1 5 3 1 2 4 5 6 1 1 7 4 1 6 0 2 1 5 2 4 1 0 1 0 6 7 0 3 2 5 1 5 5 1 6 3 1 5 3 0 7 2 2 6 5 7 0 0 1 1 1 4 5 1 5 2 6 6 1 3 1 5 6 7 3 6 6 0 7 3 5 0 4 3 0 4 6 1 0 5 3 4 3 0 3 5 2 1 1 7 1 1 0 5 4 2 1 0 7 5 1 2 7 6 2 0 2 4 3 1 6 0 6 4 3 0 0 2 0 0 0 2 6 0 6 6 6 0 0 0 2 6 2 4 6 0 4 2 2 6 4 0 4 6 4 6 4 6 0 2 0 2 6 4 4 6 0 4 6 0 2 6 0 4 4 2 2 0 6 2 4 2 2 4 0 0 2 2 2 2 6 0 0 2 2 4 6 2 4 2 0 0 0 0 4 0 4 4 4 4 4 4 0 0 0 4 0 4 4 4 4 4 0 0 0 0 0 0 0 0 0 4 4 4 4 4 4 4 0 0 4 4 4 4 0 4 0 4 0 0 0 0 4 0 0 4 4 0 4 4 0 4 0 0 4 0 0 4 4 4 4 4 generates a code of length 72 over Z8 who´s minimum homogenous weight is 66. Homogenous weight enumerator: w(x)=1x^0+268x^66+196x^67+451x^68+368x^69+442x^70+308x^71+463x^72+216x^73+364x^74+200x^75+229x^76+128x^77+142x^78+84x^79+116x^80+24x^81+54x^82+12x^83+18x^84+8x^86+2x^90+2x^92 The gray image is a code over GF(2) with n=288, k=12 and d=132. This code was found by Heurico 1.16 in 2.5 seconds.