The generator matrix 1 0 0 0 1 1 1 2 1 1 2 1 1 2 0 1 1 0 1 1 0 0 2 1 2 0 1 1 2 1 2 0 2 2 0 0 1 1 1 1 2 1 1 0 1 2 1 1 2 1 0 1 2 1 0 1 0 1 0 0 1 2 1 1 0 1 1 2 1 1 0 1 1 1 1 2 1 0 2 2 1 2 1 1 1 1 1 1 1 2 2 2 1 1 0 1 0 0 0 0 0 0 1 1 1 1 1 1 1 3 3 2 2 2 1 1 1 3 2 2 2 2 1 3 1 1 1 1 1 1 0 1 2 3 1 0 0 1 2 1 2 3 0 0 1 0 1 2 1 2 1 0 1 1 0 1 0 2 1 2 2 1 0 0 1 2 2 2 0 1 2 1 1 1 0 1 1 1 3 3 3 1 1 2 0 0 1 0 0 0 1 0 1 2 3 1 0 1 1 2 3 3 2 0 1 1 0 1 1 2 1 2 1 2 3 2 0 3 2 3 1 3 1 3 0 0 0 0 2 1 0 2 0 2 3 0 2 3 3 0 2 1 3 0 2 1 1 0 2 0 3 3 1 1 2 0 3 1 0 1 2 3 2 3 2 0 1 3 2 0 1 3 2 1 3 3 1 1 0 1 0 0 0 0 0 1 2 1 3 3 1 3 0 0 2 3 1 2 0 2 3 1 3 2 2 3 3 1 0 2 3 1 3 3 1 1 1 1 2 3 0 1 1 0 1 0 1 2 2 0 1 1 2 3 0 3 0 2 3 1 2 3 3 0 2 3 0 0 1 2 0 3 1 2 0 1 0 0 3 2 3 2 2 1 1 1 1 3 3 3 0 1 0 2 0 0 generates a code of length 94 over Z4 who´s minimum homogenous weight is 90. Homogenous weight enumerator: w(x)=1x^0+11x^90+34x^91+36x^92+44x^93+36x^94+24x^95+16x^96+16x^97+14x^98+2x^99+10x^100+4x^101+2x^102+4x^103+1x^104+1x^130 The gray image is a code over GF(2) with n=188, k=8 and d=90. This code was found by Heurico 1.10 in 0.015 seconds.