The generator matrix 1 0 1 0 1 0 1 1 1 1 1 0 0 0 1 1 0 1 1 0 1 1 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 2 2 1 1 2 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 2 1 1 2 1 1 2 1 1 2 1 1 0 1 1 0 1 1 2 1 1 2 1 1 0 1 1 0 0 1 0 1 0 1 3 3 3 0 3 1 1 1 0 3 1 0 3 1 0 3 1 0 3 1 2 1 1 2 1 1 2 1 1 2 1 1 1 1 2 1 1 2 1 2 1 2 1 0 3 0 3 1 0 3 1 0 3 1 2 1 1 2 1 1 2 1 1 2 1 1 0 3 1 0 3 1 2 1 1 2 1 1 0 3 1 2 1 1 0 0 2 0 0 0 0 0 2 2 2 0 2 2 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 2 0 0 0 0 0 2 2 0 2 2 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 2 2 2 2 2 2 0 0 0 0 0 2 0 0 2 0 0 0 2 0 0 2 2 2 0 2 0 0 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 2 0 0 0 0 2 0 0 2 0 2 0 2 2 0 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 2 0 2 0 0 0 0 2 0 2 0 0 2 2 2 2 0 0 2 2 2 0 2 2 0 0 0 2 0 0 2 2 0 2 0 2 0 2 2 0 2 2 0 2 0 0 2 0 0 2 0 2 2 0 2 0 0 0 2 2 0 2 2 0 2 2 0 2 2 2 0 0 2 0 0 0 2 2 2 0 0 2 0 0 0 2 2 0 2 0 0 2 0 0 0 0 0 0 2 2 2 2 0 2 2 2 2 2 0 0 2 0 0 2 0 0 2 0 0 0 0 0 2 2 2 0 0 2 2 2 0 2 2 2 2 0 0 0 2 2 0 0 0 0 2 2 2 0 0 2 2 2 0 2 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2 2 2 2 2 2 2 0 0 0 0 0 0 generates a code of length 90 over Z4 who´s minimum homogenous weight is 88. Homogenous weight enumerator: w(x)=1x^0+77x^88+128x^90+32x^92+15x^96+3x^120 The gray image is a code over GF(2) with n=180, k=8 and d=88. This code was found by Heurico 1.16 in 20.1 seconds.