The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 0 0 0 0 0 0 0 2 0 0 2 2 0 0 2 2 0 2 2 0 0 2 2 0 0 2 2 0 2 0 2 2 2 0 0 0 0 0 0 2 2 2 2 0 0 2 2 2 0 2 0 2 2 0 0 0 0 2 0 0 0 0 0 0 0 2 0 2 2 0 0 2 2 0 2 0 2 0 2 2 0 0 2 2 0 2 2 2 2 0 0 0 0 2 2 0 2 2 0 2 2 2 2 2 0 0 0 2 2 2 0 0 0 0 0 0 2 0 0 0 0 0 0 2 0 2 0 2 2 2 0 0 0 2 2 2 2 0 0 2 0 2 2 2 0 0 2 2 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0 2 0 0 0 2 2 0 2 0 0 0 2 0 2 2 0 2 2 2 2 0 0 2 2 0 0 0 2 2 0 0 2 2 0 0 2 0 2 2 0 0 2 2 0 0 2 0 0 2 2 2 0 0 0 0 0 0 0 0 2 0 2 2 2 0 0 0 0 0 0 2 2 0 2 2 0 2 2 0 2 2 0 0 2 0 0 2 2 2 0 0 2 2 0 2 0 2 0 2 0 0 2 2 2 0 0 2 2 0 0 0 0 0 0 0 0 0 0 2 2 0 2 0 2 0 0 2 0 2 0 2 0 2 2 0 2 2 2 2 2 2 2 2 2 2 2 0 0 2 0 0 2 2 0 2 0 2 0 0 2 0 0 2 2 2 0 0 2 0 0 generates a code of length 58 over Z4 who´s minimum homogenous weight is 52. Homogenous weight enumerator: w(x)=1x^0+19x^52+44x^56+128x^58+44x^60+19x^64+1x^116 The gray image is a code over GF(2) with n=116, k=8 and d=52. This code was found by Heurico 1.16 in 0.041 seconds.