The generator matrix 1 0 0 1 1 1 2 1 1 0 1 1 2 0 2 1 1 1 1 1 1 0 2 1 1 2 0 1 1 2 0 2 1 1 2 0 1 1 0 2 1 1 2 0 1 1 0 1 1 0 1 1 2 1 1 2 2 2 2 2 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 2 0 0 2 0 1 1 1 1 1 0 1 0 0 1 3 1 2 2 2 1 3 1 1 2 0 0 1 3 2 2 1 1 1 3 1 1 3 1 0 1 1 3 1 1 1 3 1 1 1 3 1 1 1 0 2 0 2 0 2 0 2 0 2 0 2 0 0 2 2 2 2 0 0 0 0 2 2 2 2 0 0 1 3 1 3 3 1 3 1 1 1 0 1 1 2 0 0 2 2 1 0 0 1 1 3 0 1 2 1 1 3 2 2 1 1 2 3 1 0 0 3 2 3 1 2 0 3 3 2 1 0 1 3 2 2 3 1 0 2 3 1 0 0 1 0 1 1 2 3 1 2 3 1 0 1 1 0 2 2 0 0 2 2 0 0 2 2 0 1 3 3 1 1 0 3 2 3 2 1 0 0 1 1 2 3 1 0 2 2 1 1 0 0 0 2 2 2 0 2 0 2 0 0 2 2 2 0 2 0 0 2 0 0 0 2 2 2 2 0 0 0 2 2 2 2 0 0 2 2 2 2 0 0 0 0 2 2 2 0 0 0 2 2 2 0 0 0 2 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0 2 0 2 0 2 0 2 0 0 0 0 0 0 2 2 2 2 2 generates a code of length 91 over Z4 who´s minimum homogenous weight is 89. Homogenous weight enumerator: w(x)=1x^0+24x^89+27x^90+24x^91+26x^92+12x^93+1x^94+5x^96+4x^97+3x^106+1x^110 The gray image is a code over GF(2) with n=182, k=7 and d=89. This code was found by Heurico 1.16 in 0.175 seconds.