The generator matrix 1 0 0 0 0 0 1 1 1 2 0 1 1 1 0 0 0 1 1 2 1 1 1 1 0 1 1 2 2 0 1 1 0 1 1 0 0 1 2 0 1 0 2 1 2 1 1 1 0 0 2 1 1 0 1 2 1 1 2 2 1 2 1 0 2 2 1 1 1 2 2 0 2 1 0 0 1 1 1 0 1 1 1 0 1 0 0 0 0 0 0 0 0 1 1 1 1 1 2 1 1 2 2 3 0 1 2 1 3 2 0 2 1 3 1 2 1 2 1 2 0 2 1 3 1 0 3 2 0 3 2 2 0 1 0 1 1 3 1 2 0 1 2 2 2 1 1 2 1 1 0 2 2 1 1 1 0 2 2 3 1 1 1 2 3 0 0 0 1 0 0 0 0 0 0 0 0 0 0 2 2 0 0 2 0 0 2 2 0 3 1 1 3 1 1 1 1 1 1 2 1 3 2 1 1 1 1 0 1 2 0 1 2 3 2 2 0 1 3 0 3 2 3 3 0 1 3 1 3 2 1 3 2 2 1 2 1 2 0 1 1 1 2 1 1 2 0 2 1 0 0 0 1 0 0 0 1 1 1 1 3 2 2 2 0 3 1 1 0 0 0 3 2 0 0 1 0 1 2 1 3 0 0 1 1 1 2 1 3 2 3 3 0 0 2 1 1 2 1 2 3 1 1 0 2 0 1 2 2 2 0 3 0 2 3 0 0 1 1 0 0 0 3 2 3 2 1 0 3 1 1 1 0 0 0 0 1 0 1 1 0 3 1 2 3 0 1 1 2 3 3 2 1 3 0 3 2 2 1 1 0 1 0 3 1 0 0 2 0 0 1 3 0 1 0 3 2 2 3 3 1 1 3 0 0 1 3 2 0 3 1 2 0 2 1 0 3 1 1 0 1 0 3 2 0 2 2 3 0 0 0 1 3 2 1 0 0 0 0 0 1 1 0 1 1 2 2 0 3 1 2 3 3 0 1 0 1 2 2 3 2 1 3 1 0 1 2 3 3 0 0 0 1 0 1 2 0 1 0 1 1 1 3 2 1 0 2 1 1 2 3 0 1 3 1 0 2 3 3 2 3 1 3 0 3 1 2 0 1 3 3 2 2 1 1 2 3 3 0 0 0 0 0 0 2 0 2 0 0 2 2 0 2 2 0 2 2 2 0 0 0 2 0 2 0 2 2 0 0 2 0 2 0 0 2 0 2 2 2 2 2 2 0 0 2 0 0 2 2 2 2 0 0 0 0 2 0 2 2 2 2 2 0 0 2 0 0 2 2 2 2 2 2 2 0 2 0 0 0 0 0 0 0 0 0 0 0 0 2 2 2 2 2 0 0 0 0 2 2 2 0 0 0 2 0 0 0 2 0 2 0 2 2 0 0 2 2 2 0 0 0 2 0 0 2 2 2 0 0 2 0 2 0 2 0 2 2 2 0 2 2 0 2 0 2 0 0 2 0 0 0 2 0 2 0 2 2 0 2 0 0 0 0 0 generates a code of length 83 over Z4 who´s minimum homogenous weight is 69. Homogenous weight enumerator: w(x)=1x^0+60x^69+128x^70+254x^71+299x^72+388x^73+526x^74+596x^75+711x^76+634x^77+722x^78+828x^79+853x^80+906x^81+916x^82+886x^83+870x^84+942x^85+847x^86+778x^87+746x^88+680x^89+615x^90+522x^91+447x^92+396x^93+273x^94+194x^95+154x^96+80x^97+62x^98+36x^99+12x^100+8x^101+5x^102+2x^103+2x^104+2x^105+1x^106+1x^110+1x^120 The gray image is a code over GF(2) with n=166, k=14 and d=69. This code was found by Heurico 1.16 in 98.7 seconds.