The generator matrix 1 0 0 0 0 0 1 1 1 2 1 1 2 1 1 0 1 1 1 1 2 0 1 0 1 2 2 0 1 2 2 1 0 1 1 0 0 0 1 1 1 0 1 1 1 0 1 0 1 1 0 0 2 2 1 0 1 0 2 0 2 1 1 2 1 1 1 1 0 1 1 2 1 1 0 1 0 0 0 0 0 0 0 0 0 2 2 1 1 1 3 1 1 3 0 1 3 1 0 2 1 1 1 1 1 0 1 1 3 1 2 1 0 2 1 1 1 0 0 2 2 2 0 1 1 1 1 2 3 2 2 1 1 1 1 0 2 1 3 0 3 2 1 0 3 0 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 3 3 2 2 1 1 0 2 1 3 1 3 2 3 1 0 3 3 2 3 2 1 0 2 2 3 1 3 2 0 1 0 1 3 1 1 0 3 2 3 1 0 0 1 3 3 3 2 0 3 2 2 1 1 1 3 1 0 0 0 0 0 1 0 0 0 1 1 1 2 1 3 3 2 3 1 2 0 3 0 2 1 1 2 1 2 3 0 0 3 3 2 2 0 2 2 3 1 0 1 0 2 1 2 0 1 3 0 2 3 1 3 1 1 1 2 1 1 1 1 2 0 3 3 3 1 3 3 1 0 0 1 1 0 0 0 0 1 0 1 0 1 3 2 1 3 3 3 0 2 0 1 3 1 1 2 3 3 2 3 0 0 0 1 2 3 0 3 1 3 1 2 3 2 3 2 2 2 3 3 2 0 1 0 0 1 1 1 2 0 2 1 0 3 1 2 3 0 0 1 2 1 0 0 0 1 2 0 0 0 0 0 1 1 3 2 1 1 1 0 1 3 2 1 1 2 2 3 3 0 3 0 1 2 1 0 1 0 2 0 3 1 1 1 0 3 3 3 3 1 2 0 0 1 0 0 2 0 3 2 0 2 2 3 0 1 3 2 2 1 1 3 0 1 2 1 2 0 1 2 3 0 0 0 0 0 0 2 2 0 2 2 2 0 2 2 0 2 2 0 0 2 2 0 2 0 2 0 2 0 2 0 0 2 0 0 0 0 2 0 0 0 0 0 2 2 2 0 2 2 0 2 0 0 2 2 0 0 2 0 0 2 0 2 2 0 2 0 0 2 2 0 2 2 2 generates a code of length 74 over Z4 who´s minimum homogenous weight is 62. Homogenous weight enumerator: w(x)=1x^0+72x^62+118x^63+194x^64+266x^65+316x^66+384x^67+384x^68+420x^69+403x^70+430x^71+466x^72+468x^73+482x^74+448x^75+430x^76+436x^77+447x^78+394x^79+325x^80+334x^81+301x^82+216x^83+134x^84+104x^85+75x^86+50x^87+46x^88+20x^89+12x^90+8x^91+4x^92+2x^94+1x^98+1x^110 The gray image is a code over GF(2) with n=148, k=13 and d=62. This code was found by Heurico 1.10 in 4.34 seconds.