The generator matrix 1 0 0 0 0 0 1 1 1 2 1 1 2 1 1 0 1 1 1 1 2 0 1 0 1 2 2 0 1 1 1 1 1 1 0 2 1 2 0 2 0 2 0 1 1 2 2 1 1 0 1 0 2 2 1 1 2 1 1 1 0 2 0 2 0 1 2 2 1 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0 2 2 1 1 1 3 1 1 3 0 1 3 1 0 2 1 1 3 2 3 2 0 0 2 1 3 2 1 1 2 1 2 3 3 1 1 2 3 1 1 1 0 1 1 1 0 2 2 2 2 0 1 2 1 1 1 1 3 2 1 0 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 3 3 2 2 1 1 0 2 1 3 1 3 2 1 1 3 2 1 1 1 0 2 1 1 0 0 3 1 3 1 2 0 3 0 1 3 2 1 0 1 2 2 2 0 1 1 0 0 1 1 3 1 3 2 1 2 0 0 0 0 0 1 0 0 0 1 1 1 2 1 3 3 2 3 1 2 0 3 0 2 1 1 2 1 2 3 0 3 3 0 0 3 2 3 0 2 0 3 2 1 1 0 0 0 1 2 2 0 3 1 0 2 1 3 1 0 3 2 1 1 3 0 1 1 1 0 1 1 2 0 0 0 0 0 0 1 0 1 0 1 3 2 1 3 3 3 0 2 0 1 3 1 1 2 3 3 2 3 0 0 0 3 2 0 1 2 3 3 3 1 0 1 2 3 0 2 3 0 3 3 3 3 0 1 0 2 0 2 2 2 0 0 0 2 3 0 3 1 0 0 2 0 1 0 0 0 0 0 0 1 1 3 2 1 1 1 0 1 3 2 1 1 2 2 3 3 0 3 0 1 2 1 0 2 2 2 3 3 2 2 0 1 0 3 3 3 1 3 2 2 0 1 3 3 3 0 2 2 0 3 0 3 0 2 3 2 0 0 1 1 0 2 2 0 0 3 0 0 0 0 0 0 0 2 2 0 2 2 2 0 2 2 0 2 2 0 0 2 2 0 2 0 2 0 2 2 2 2 2 0 0 2 2 2 0 2 0 0 0 2 0 2 2 0 2 0 0 0 2 0 2 2 2 2 0 2 0 0 2 0 2 0 2 0 2 2 0 0 0 0 generates a code of length 73 over Z4 who´s minimum homogenous weight is 60. Homogenous weight enumerator: w(x)=1x^0+17x^60+66x^61+136x^62+188x^63+275x^64+296x^65+363x^66+408x^67+408x^68+404x^69+406x^70+480x^71+452x^72+468x^73+449x^74+494x^75+444x^76+412x^77+431x^78+330x^79+303x^80+244x^81+190x^82+166x^83+124x^84+84x^85+61x^86+42x^87+21x^88+8x^89+10x^90+4x^91+2x^92+2x^93+2x^94+1x^100 The gray image is a code over GF(2) with n=146, k=13 and d=60. This code was found by Heurico 1.10 in 4.19 seconds.