The generator matrix 1 0 0 0 0 1 1 1 2 0 1 1 1 0 1 0 1 1 2 0 0 1 0 1 1 0 0 2 1 2 1 2 0 1 1 2 1 1 0 0 2 2 2 1 1 2 1 0 1 0 2 1 0 2 1 2 1 2 1 1 1 0 1 2 1 1 0 0 0 1 2 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 1 1 1 1 1 1 2 2 1 1 1 1 2 0 0 1 2 1 1 0 1 3 2 1 3 3 1 3 0 1 1 1 1 1 2 1 1 0 1 2 1 0 0 1 2 1 1 2 2 1 0 3 0 0 2 3 0 1 1 1 1 1 3 1 1 0 0 0 0 0 1 0 0 0 1 1 1 1 3 2 0 0 1 0 1 3 3 1 2 0 2 3 3 1 3 3 1 2 0 1 0 0 2 2 3 3 2 3 1 1 2 2 1 3 2 3 0 2 0 2 3 1 1 2 3 1 3 2 1 0 1 2 1 3 1 3 3 2 2 2 3 3 1 0 0 0 0 0 1 0 1 1 0 3 1 2 3 0 3 1 1 2 2 1 0 3 2 1 3 1 1 0 3 0 3 0 0 3 2 3 2 2 2 3 1 2 0 2 0 1 0 1 3 0 1 0 0 2 2 2 0 0 1 2 1 3 2 2 1 1 1 0 0 3 2 1 0 0 1 1 3 0 0 0 0 0 1 1 0 1 1 2 2 0 3 1 3 2 1 0 2 1 3 1 3 3 2 0 0 3 0 2 2 1 2 0 1 1 3 3 1 1 2 2 1 1 0 2 2 3 2 1 1 0 2 2 3 0 1 2 1 3 3 1 2 3 0 2 0 0 2 0 3 0 2 3 0 1 0 0 0 0 0 0 2 0 2 0 0 2 2 2 0 0 2 0 0 2 2 2 2 2 2 0 2 0 2 2 2 0 0 2 2 2 2 2 0 0 2 2 2 2 2 2 0 2 0 2 2 0 0 0 2 0 2 2 0 2 0 0 2 2 2 2 0 0 2 0 2 0 2 2 0 0 2 0 0 0 0 0 0 0 2 2 2 2 2 0 0 2 0 0 0 0 0 0 0 2 0 0 2 2 2 2 0 0 2 2 2 0 2 2 0 2 0 0 2 0 0 0 2 0 2 0 0 2 2 2 0 0 2 2 0 0 2 2 2 0 2 2 0 0 2 0 2 2 2 0 0 2 2 0 0 generates a code of length 77 over Z4 who´s minimum homogenous weight is 66. Homogenous weight enumerator: w(x)=1x^0+60x^66+82x^67+129x^68+194x^69+189x^70+230x^71+258x^72+228x^73+241x^74+244x^75+219x^76+214x^77+185x^78+184x^79+175x^80+212x^81+197x^82+170x^83+148x^84+130x^85+102x^86+78x^87+73x^88+40x^89+42x^90+32x^91+20x^92+6x^93+8x^94+4x^95+1x^96 The gray image is a code over GF(2) with n=154, k=12 and d=66. This code was found by Heurico 1.16 in 3.17 seconds.